
1
2006 Adobe Systems Incorporated. All Rights Reserved.

A Possible Future of
Software Development

Sean Parent

October 22, 2006

2006 Adobe Systems Incorporated. All Rights Reserved.
2

Engineering Team Structure

Product Line:

Photoshop, Acrobat, InDesign, …

Products:

Photoshop CS2, Photoshop Elements, Photoshop Lightroom, …

Product Team:

Developers ≈20

Testers ≈30

User Interface Designers ≈1

Shared Technology Groups: ≈20

Libraries for Vector Graphics, Type, Color, Help, Localization, XML Parsing, File Handling, etc.

2006 Adobe Systems Incorporated. All Rights Reserved.
3

Development Process

Process is Constrained by Business Model

Schedule Driven, Incremental Development Model on 18-24 month cycles

Larger Products and Suites Forced Toward Waterfall Model

Press for Manuals must be reserved up to 5 months in advance

Most Products Ship Simultaneously For Macintosh and Windows in English,
French, German, and Japanese

Other languages follow shortly to about 24 languages

2006 Adobe Systems Incorporated. All Rights Reserved.
4

Photoshop Facts

History

1987: Started by Thomas Knoll

1990: 1.0 Shipped by Adobe

1991: 2.0 Clipping Path

1993: 2.5 First Version on Windows

1994: 3.0 Layers

1996: 4.0 Actions & Adjustment Layers

1998: 5.0 History & Color Management

1999: 5.5 Web Development

2000: 6.0 Typography

2002: 7.0 Camera RAW, Healing Brush, Natural Painting

2003: CS Lens Blur, Color Match, Shadow/Highlight

2005: CS2 High Dynamic Range Imaging, Smart Objects, Lens Correction

2006 Adobe Systems Incorporated. All Rights Reserved.
5

Photoshop Code

100% C++ since Photoshop 2.5

Stats for Photoshop CS2 (version 9):

Files: ≈ 6,000

Lines: ≈ 3,000,000

Developers: 20

Testers: 28

Develop Cycle: ≈18 months

Image Processing Code: ≈15%

2006 Adobe Systems Incorporated. All Rights Reserved.
6

The Analysts Future

“Best practices”, methodologies, and process are changing continuously

Trend towards Java and C# languages

As well as JavaScript and VisualBasic is still strong

Java still has only a small presence on the desktop

Object Oriented is Ubiquitous

XML growing as Data Interchange Format

Web Services

Open Source

Foundation Technologies Commoditized

2006 Adobe Systems Incorporated. All Rights Reserved.
7

The Analysts Future

“Organizations need to integrate security best practices, security testing
tools and security-focused processes into their software development life
cycle. Proper execution improves application security, reduces overall costs,
increases customer satisfaction and yields a more-efficient SDLC.”

- Gartner Research, Feburary 2006

“Microsoft has been slowly moving to a new development process that will
affect how partners and customers evaluate and test its software… The new
process should help Microsoft gain more feedback earlier in the
development cycle, but it won’t necessarily help the company ship its
products on time or with fewer bugs.”

- Directions on Microsoft, March 2006

2006 Adobe Systems Incorporated. All Rights Reserved.
8

Why Status Quo Will Fail

“I’ve assigned this problem [binary search] in courses at Bell Labs and IBM.
Professional programmers had a couple of hours to convert the description
into a programming language of their choice; a high-level pseudo code was
fine… Ninety percent of the programmers found bugs in their programs
(and I wasn’t always convinced of the correctness of the code in which no
bugs were found).”

- Jon Bentley, Programming Pearls, 1986

2006 Adobe Systems Incorporated. All Rights Reserved.
9

Binary Search Solution

int* lower_bound(int* first, int* last, int x)
{

while (first != last)
{

int* middle = first + (last - first) / 2;

if (*middle < x) first = middle + 1;
else last = middle;

}

return first;
}

2006 Adobe Systems Incorporated. All Rights Reserved.
10

Question: If We Can’t Write Binary Search…

Jon Bentley’s solution is considerably more complicated (and slower).

Photoshop uses this problem as a take home test for candidates.

More than 90% of candidates fail.

Our experience teaching algorithms would indicate that more than 90% of
engineers, regardless of experience, cannot write this simple code.

…then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

11
2006 Adobe Systems Incorporated. All Rights Reserved.

Bugs During Product Cycle

12
2006 Adobe Systems Incorporated. All Rights Reserved.

Bugs During Product Cycle

2006 Adobe Systems Incorporated. All Rights Reserved.
13

Answer: Iterative Refinement.

Current programming methodologies lend themselves to iterative
refinement.

We don’t solve problems, we approximate solutions.

2006 Adobe Systems Incorporated. All Rights Reserved.
14

Writing Correct Algorithms

We need to study how to write correct algorithms.

Write algorithms once in a general form that can be reused.

Focus on the common algorithms actually used.

2006 Adobe Systems Incorporated. All Rights Reserved.
15

Generic Programming

Start with a concrete algorithm.

Refine the algorithm, reducing it to its minimal requirements.

Clusters of related requirements are known as Concepts.

Define the algorithms in terms of Concepts - supporting maximum reuse.

Data structures (containers) are created to support algorithms.

16
2006 Adobe Systems Incorporated. All Rights Reserved.

Programming as Mathematics

Refined Concept - a Concept defined by adding requirements to an existing
concept.

monoid: semigroup with an identity element

BidirectionalIterator: ForwardIterator with constant complexity decrement

Refined Algorithm - an algorithm performing the same function as another
but with lower complexity or space requirements on a refined concept

Mathematics

Axiom

Algebraic Structure

Model

Theorems

Function

Generic Programming

Semantic Requirement

Concept

Model (types model concepts)

Algorithms

Regular Function

Complexity

2006 Adobe Systems Incorporated. All Rights Reserved.
17

Simple Generic Algorithm

template <typename T> // T models Regular
void swap(T& x, T& y)
{

T tmp(x);
x = y;
y = tmp;

}

2006 Adobe Systems Incorporated. All Rights Reserved.
18

A Quick Look At Concepts

Table 3 – EqualityComparable

== is the equality relationboola == b

Table 2 - Assignable

t is equal to uT&t = u

Table 1 - CopyConstructable

denotes address of uconst T*&u

denotes address of tT*&t

t.~T()

u is equal to T(u)T(u)

t is equal to T(t)T(t)

post-conditionreturn typeexpression

2006 Adobe Systems Incorporated. All Rights Reserved.
19

Value Semantics

For all a, a == a (reflexive).

If a == b, then b == a (symmetric).

If a == b, and b == c, then a == c (transitive).

 !(a == b) a != b.

T a(b) implies a == b.

T a; a = b T a(b).

T a(c); T b(c); a = d; then b == c.

T a(c); T b(c); modify(a) then b == c and a != b.

If a == b then for any regular function f, f(a) == f(b).

2006 Adobe Systems Incorporated. All Rights Reserved.
20

Challenges

Language Support for Concepts

Extending Concepts to Runtime

Replacing inheritance as a mechanism for polymorphism

Constructing a Library of Algorithms and Containers

STL is only a beginning - must be considered an example

Question: Is this enough to build an application?

2006 Adobe Systems Incorporated. All Rights Reserved.
21

2006 Adobe Systems Incorporated. All Rights Reserved.
22

Current Design of Large Systems

Networks of objects form implicit data structures.

Messaging among objects form implicit algorithms.

Design Patterns assist in reasoning about these systems.

Local rules which approximate correct algorithms and structures.

Iteratively refine until quality is “good enough.”

23
2006 Adobe Systems Incorporated. All Rights Reserved.

Event Flow in a Simple User Interface

2006 Adobe Systems Incorporated. All Rights Reserved.
24

Facts:

1/3 of the code in Adobe’s desktop applications is devoted to event
handling logic.

1/2 of the bugs reported during a product cycle exist in this code.

2006 Adobe Systems Incorporated. All Rights Reserved.
25

If Writing Correct Algorithms is Difficult…

…Writing correct implicit algorithms is very difficult.

We need to study what these implicit algorithms do, and express the
algorithms explicitly on declared data structures.

2006 Adobe Systems Incorporated. All Rights Reserved.
26

Declarative Programming

Describe software in terms of rules rather than sequences of instructions.

Rules define a structure upon which solving algorithms can operate.

Examples of non-Turing complete* systems:

Lex and YACC (and BNF based parsers)

Sequel Query Language (SQL)

HTML (if we ignore scripting extensions)

Spreadsheet

Can be Turing complete (i.e. Prolog).

But Turing complete systems lead us back to the complexity of algorithms.

*Some of these systems are “accidentally” Turing complete or support extensions that make them Turing
complete (such as allowing cycles in a spreadsheet engine). In practice though, this can often be
effectively ignored and disallowed.

2006 Adobe Systems Incorporated. All Rights Reserved.
27

STLab Research: “Declarative UI Logic”

Definition: A User Interface (UI) is a system for assisting a user in selecting a
function and providing a valid set of parameters to the function.

Definition: A Graphical User Interface (GUI) is a visual and interactive system
for assisting a user in selecting a function and providing a valid set of
parameters to the function.

We’re starting with what it means to assist the user in providing a valid set of
parameters to a function…

2006 Adobe Systems Incorporated. All Rights Reserved.
28

Demo

2006 Adobe Systems Incorporated. All Rights Reserved.
29

Imperative Solution to Mini-Image Size

2006 Adobe Systems Incorporated. All Rights Reserved.
30

Declarative Solution

sheet mini_image_size
{
 input:

original_width : 5 * 300;
original_height : 7 * 300;

 interface:
constrain : true;
width_pixels : original_width <== round(width_pixels);
height_pixels : original_height <== round(height_pixels);
width_percent;
height_percent;

 logic:
relate {

width_pixels <== round(width_percent * original_width / 100);
width_percent <== width_pixels * 100 / original_width;

}
relate {

height_pixels <== round(height_percent * original_height / 100);
height_percent <== height_pixels * 100 / original_height;

}
when (constrain) relate {

width_percent <== height_percent;
height_percent <== width_percent;

}
 output:

result <== { height: height_pixels, width: width_pixels };
}

31
2006 Adobe Systems Incorporated. All Rights Reserved.

Structure of Simple User Interface

2006 Adobe Systems Incorporated. All Rights Reserved.
32

Future of Software Development

85% of existing code base can be replaced with small declarations and a
small library of generic algorithms.

Formally describe application behavior by expressing algorithm
requirements and structure invariants.

Extend the ideas from STL to encompass richer structures with full
transaction semantics.

Shift polymorphic requirements from objects to containers allowing generic
programming with runtime polymorphism.

2006 Adobe Systems Incorporated. All Rights Reserved.
33

