
1

bbc

Simulating Partial Specialization

Mat Marcus
mmarcus@adobe.com

October 15, 2001

Generative Programming Workshop
OOPSLA 2001

bbc

Generative Programming Workshop
OOPSLA 2001

Overview

The focus is on solving problems using
generative template metaprogramming in a
shrink wrap software development
environment.

Will work through two sample problems that
arise when implementing generic containers
in C++

Along the way will sketch two results from
our research. One is a year old and one is a
week old, so it is still somewhat rough.

2

bbc

Generative Programming Workshop
OOPSLA 2001

Context

Shrink wrap Software Development

Deliver for Mac OS and Windows

Associated SDK
Software Is Developed in C++
Extensibility is critical
API mostly uses interface classes
Binary compatibility across releases is important

Microsoft compiler has limited support for
standard C++

In particular no support for partial specialization

bbc

Generative Programming Workshop
OOPSLA 2001

Motivation

Would like to use generic containers from Standard
Template Library

Powerful, convenient, well documented framework

Couldn’t use vendors implementations
Existing STL implementations suffered from template code
bloat under MSVC - no partial specialization
Binary compatibility across compiler versions would suffer

Existing Internal Container Libraries
Optimized, limited template bloat
Non standard, not easy to use
Too many classes to choose from

3

bbc

Generative Programming Workshop
OOPSLA 2001

Problem

Implementing part of a std::vector clone

Two of the non-functional requirements
Require no template code bloat

Require optimized std::copy, etc. for “plain old data”
types, e.g. built-in types

bbc

Generative Programming Workshop
OOPSLA 2001

Naïve Approach Causes Code Bloat
/* Bloat: The compiler will instantiate separate code
for each vector of pointers even though the machine
instructions are the same. */

template <typename T>
class SimpleVector
{ /* . . . */ };

/* This is often addressed by creating a separate
container template */

template <typename T>
class PtrVector : public SimpleVector<void *>
{/*Wrap base members with typecasts*/ };

/* But now clients must remember to select the
appropriate container template, PtrVector, if they are
using pointers. */

4

bbc

Generative Programming Workshop
OOPSLA 2001

A Solution: Use a Vector Generator
We will define a container generating metafunction:

template <typename T>
struct VECTOR_GENERATOR {
typedef /* . . . */ RET;};

VECTOR_GENERATOR<T>::RETwill be the appropriate
container

VECTOR_GENERATOR<int*>::RET is of type
PtrVector<int*>

VECTOR_GENERATOR<std::string>::RET is of type
SimpleVector<std::string>

Can add some syntactic sugar using inheritance
template <typename T>
class Vector : public typename
VECTOR_GENERATOR<T>::RET
{ /* implement delegating ctors */ }
Now client can write the code as if partial specialization was
present without fear of template bloat e.g: Vector<int*> v;

bbc

Generative Programming Workshop
OOPSLA 2001

Vector Generator Implementation

Create metafunction IS_PTR
E.g. IS_PTR<int *>::RET == 1

Borrow template metafunction IF [CE2000]
E.g. IF<1+1 == 3,int,std::string> ::RET is of
type std::string

Then VECTOR_GENERATOR can be written:
template <typename T>
struct VECTOR_GENERATOR {
typedef typename IF<IS_PTR<T>::RET,

PtrVector<T>,
SimpleVector<T>

>::RET RET;
};

5

bbc

Generative Programming Workshop
OOPSLA 2001

IS_PTR

There were existing versions of IS_PTR but all
relied on partial template pointer
specialization.

We can subvert the function overload
resolution mechanism instead.

Alexandrescu pointed out the usefulness of
sizeof in template programming. In
particular sizeof can determine the size of
any expression at compile time.

bbc

Generative Programming Workshop
OOPSLA 2001

IS_PTR implementation
/*Let us begin with IS_PTR. IS_PTR must discriminate
between pointer types and all others. We pass an instance
of T named t to a pair of overloaded functions. It helps
to think of t hese functions as discriminators. Each
function has a uniquely sized return type so that sizeof
can determine which function was selected by the overload
resolution mechanism. So here is a simplified version of
IS_PTR (see Appendix or [2] for a m ore detailed
implementation).*/

/* These are the discriminating functions. Note that
only a declaration is required by sizeof. */

char IsPtr(void*);
int IsPtr(...);

// This template metafunction accepts a type T
// then sets RET to true exactly when T is a
// pointer.

template <typename T>
struct IS_PTR {
 static T t; //definition not required.
 enum { RET = (sizeof(IsPtr(t)) == sizeof(char)) };
};

6

bbc

Generative Programming Workshop
OOPSLA 2001

“Associated” Type Recovery

We would also like to recover the underlying value type.
That is we would like to be able to write something like
REMOVE_PTR<T>::RET otherwise known as
std::iterator_traits<T>::value_type

We know of no way to do so for pointers without partial
specialization. But we don’t always need to completely
recover the underlying type. Sometimes it suffices to “ask it
a question”.

In those cases we can turn our client code “inside out”. If we
have some work to carry out we can create a metafunction
to be executed with the underlying type as its argument.
The restriction is that the metafunction can only return an
enum not a type.

bbc

Generative Programming Workshop
OOPSLA 2001

Applying a metafunction to an
Associated Type

As an example suppose we have the metafunction IS_POD
which detects whether a type T is “plain old data”. Lets say
we want to detect whether T points to plain old data. That
is we would like to have a metafunction IS_PTR_TO_POD. If
we had REMOVE_PTR we might be able to use
IS_POD<typename REMOVE_PTR<T>::RET>::RET. Instead
we can ask IS_POD to be evaluated in the context of the
underlying type.

7

bbc

Generative Programming Workshop
OOPSLA 2001

Applying a metafunction to an
Associated Type (cont.)

Note that we are not limited to recovering value types from
pointers. We can apply the same technique to arbitrary type
relationships. Nor are we limited to single argument
metafunctions. For example we can ask:

IS_VECTOR_OF_LIST_OF_POD<T>

IS_PTR_TO_SAME<T,U>

bbc

Generative Programming Workshop
OOPSLA 2001

Applied Inside Out Type Recovery

As an example once we have our IS_PTR_TO_POD we can
implement our other non-functional requirement - an
optimized std::copy.

8

bbc

Generative Programming Workshop
OOPSLA 2001

template <typename InputIter, typename ForwardIter>
inline ForwardIter
FastCopy<InputIter, ForwardIter>::copy(
InputIter first, InputIter last, ForwardIter result)

{

META_ASSERT<
IS_PTR_TO_POD<InputIter>::RET
&& IS_PTR_TO_POD<ForwardIter>::RET
&& IS_PTR_TO_SAME_TYPE<InputIter,ForwardIter>::RET,
FastCopy_on_bad_types>();

ptrdiff_t count = last - first;
memmove(result, first, count*sizeof(*first));
return result + count;

}

template <typename InputIter, typename ForwardIter>
inline ForwardIter copy(InputIter first,
InputIter last, ForwardIter result)

{
return IF<IS_PTR_TO_POD<InputIter>::RET

&& IS_PTR_TO_POD<ForwardIter>::RET
&& IS_PTR_TO_SAME_TYPE<InputIter,

ForwardIter
>::RET,

FastCopy<InputIter, ForwardIter>,
SafeCopy<InputIter, ForwardIter>

>::RET::copy(first, last, result);
 }

bbc

Generative Programming Workshop
OOPSLA 2001

IS_PTR_TO_POD implementation
/* For IS_PTR_TO_POD we again make use of the function
overload resolution mechanism. But this time we use it to
“remove” the pointer before applying the IS_POD
metafunction. The key point is that we can give the
IS_POD metafunction access to the underlying type by
using it in the return type of our discriminator. */

template <typename T>
struct IS_POD {
enum {RET = /* see Appendix */ };

};

template <typename T>
struct IS_PTR_TO_POD
{

/* The IF below is one way to convert the enum returned
by IS_POD into a type suitable for passing to sizeof. */

 template <typename V>
 IF<IS_POD<V>::RET, char, int>::RET RemovePtr(V*);
 int RemovePtr (…);

 enum {RET = sizeof(RemovePtr(t))== sizeof(char) };
 static T t;

};

9

bbc

Generative Programming Workshop
OOPSLA 2001

Related Work

The IF for broken compilers appeared in [CE2000].

IS_PTR existed for some time for compilers that support
partial specialization, see boost::type_traits for example.

In September 2000 Jesse Jones and I published an
implementation for “broken” compilers using properties of
the sizeof operator pointed out by Alexandrescu.

These “workarounds” were refined by John Maddock into
boost::type_traits for is_pointer and similar metafunctions.

Last week when preparing this paper I uncovered the
“inside out” type recovery technique.

bbc

Generative Programming Workshop
OOPSLA 2001

Discussion ideas

Why aren’t explicit control constructs (IF, SWITCH,
WHILE, etc.) used more widely by the template
metaprogramming community. This style from
[CE2000] seems more readable than template
specialization. In addition it can guide us in writing
metaprograms that would otherwise seem too
complex or escape our notice.

We can avoid some uses of std::iterator_traits<T>
::value_type by turning calculations inside out to
“recover the associated type”. Where else might it be
this technique be useful.

10

bbc

Q&A

bbc

bbc
you look™

everywhere

