A Possible Future of
Software Development

Sean Parent

October 22, 2006

Engineering Team Structure

Product Line:

= Photoshop, Acrobat, InDesign, ...

Products:

= Photoshop CS2, Photoshop Elements, Photoshop Lightroom, ...

= Product Team:
= Developers =20
= Testers =30
= User Interface Designers =1
= Shared Technology Groups: =20

= Libraries for Vector Graphics, Type, Color, Help, Localization, XML Parsing, File Handling, etc.

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Development Process

= Process is Constrained by Business Model

= Schedule Driven, Incremental Development Model on 18-24 month cycles
= Larger Products and Suites Forced Toward Waterfall Model
= Press for Manuals must be reserved up to 5 months in advance
= Most Products Ship Simultaneously For Macintosh and Windows in English,
French, German, and Japanese

= Other languages follow shortly to about 24 languages

Al

3
2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Photoshop Facts

= History
= 1987: Started by Thomas Knoll
= 1990: 1.0 Shipped by Adobe
= 1991: 2.0 Clipping Path
= 1993: 2.5 First Version on Windows
= 1994: 3.0 Layers
= 1996: 4.0 Actions & Adjustment Layers
= 1998: 5.0 History & Color Management
= 1999: 5.5 Web Development
= 2000: 6.0 Typography
= 2002:7.0 Camera RAW, Healing Brush, Natural Painting
= 2003: CS Lens Blur, Color Match, Shadow/Highlight
= 2005: CS2 High Dynamic Range Imaging, Smart Objects, Lens Correction

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Photoshop Code

= 100% C++ since Photoshop 2.5
= Stats for Photoshop CS2 (version 9):

= Files: = 6,000

= Lines: =~ 3,000,000
= Developers: 20

= Testers: 28

= Develop Cycle: =18 months

= Image Processing Code: =15%

Al

5
2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Analysts Future

= “Best practices”, methodologies, and process are changing continuously

= Trend towards Java and C# languages

= As well as JavaScript and VisualBasic is still strong
= Java still has only a small presence on the desktop

= Object Oriented is Ubiquitous
= XML growing as Data Interchange Format
= Web Services

= Open Source

= Foundation Technologies Commoditized

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Analysts Future

= “Organizations need to integrate security best practices, security testing
tools and security-focused processes into their software development life
cycle. Proper execution improves application security, reduces overall costs,
increases customer satisfaction and yields a more-efficient SDLC.”
- Gartner Research, Feburary 2006

= “Microsoft has been slowly moving to a new development process that will
affect how partners and customers evaluate and test its software... The new
process should help Microsoft gain more feedback earlier in the
development cycle, but it won't necessarily help the company ship its
products on time or with fewer bugs.”
- Directions on Microsoft, March 2006

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Why Status Quo Will Fail

= “I've assigned this problem [binary search] in courses at Bell Labs and IBM.
Professional programmers had a couple of hours to convert the description
into a programming language of their choice; a high-level pseudo code was
fine... Ninety percent of the programmers found bugs in their programs
(and | wasn't always convinced of the correctness of the code in which no
bugs were found).”
- Jon Bentley, Programming Pearls, 1986

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Binary Search Solution

int* lower_bound(int* first, int* last, int x)

{
while (first |=1ast)

{
int* middle = first + (last - first) / &;
if (*middle < x) first = middle + 1;
else last = middle;

}

return first;

2006 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

Question: If We Can’t Write Binary Search...

= Jon Bentley's solution is considerably more complicated (and slower).

= Photoshop uses this problem as a take home test for candidates.

= More than 90% of candidates fail.

= QOur experience teaching algorithms would indicate that more than 90% of
engineers, regardless of experience, cannot write this simple code.

...then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Bugs During Product Cycle

1400
1200
1000
800
——Actual
600 —&— Original
w— New Forecast

-200

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Bugs During Product Cycle

All Bugs - 6/9/05

3000

2500

= = =
= o =
= L]
(] —_ —
sBng Jo Jaqunp

a00

S0Ese
S0/38
SOVESS S
S0ded s
S0/5C/9
S¢L LS
S0/8C/S
SOvF LIS
SOVOE!
Soa it
SO/t
S¥ELE
SO/S/E
SVELIE
SO/S/E
SOFEC |
SOes L
FOYSTAEL
FOALLICL
FOALTA L
FOELSLL
FO/OC/0L
FOaLOL
FosE0L
FELE
FOFE
FOfLCrE
IR
FOFCsL
ro/oLss
FeCs

Y izl

FOVECSS
S LIS
FOf LS

54 v

10 FOEF
i FO/OZE
b pvave

Week Ending

Found ——Closed ——Total Open |

Al

Adobe

12

2006 Adobe Systems Incorporated. All Rights Reserved.

Answer: Iterative Refinement.

= Current programming methodologies lend themselves to iterative
refinement.

= We don’t solve problems, we approximate solutions.

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Writing Correct Algorithms

= We need to study how to write correct algorithms.
= Write algorithms once in a general form that can be reused.

= Focus on the common algorithms actually used.

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Generic Programming

= Start with a concrete algorithm.

= Refine the algorithm, reducing it to its minimal requirements.

= Clusters of related requirements are known as Concepts.

= Define the algorithms in terms of Concepts - supporting maximum reuse.

= Data structures (containers) are created to support algorithms.

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Programming as Mathematics

= Generic Programming = Mathematics
= Semantic Requirement = Axiom
= Concept = Algebraic Structure
= Model (types model concepts) = Model
= Algorithms = Theorems
= Regular Function = Function
= Complexity .

= Refined Concept - a Concept defined by adding requirements to an existing
concept.

= monoid: semigroup with an identity element

= Bidirectionallterator: Forwardlterator with constant complexity decrement

= Refined Algorithm - an algorithm performing the same function as another
but with lower complexity or space requirements on a refined concept

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Simple Generic Algorithm

template <typename T> // T models Regular
void swap(Té& x, T& y)

{
T tmp(x);
X =Y;
y = tmp;

}

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

A Quick Look At Concepts

expression return type post-condition
T(t) tis equal to T(t)
T(u) u is equal to T(u)
t.~T()
&t T* denotes address of t
&u const T* denotes address of u

Table 1 - CopyConstructable
t=u T& tisequal tou
Table 2 - Assignable

a== bool == is the equiality relation

2006 Adobe Systems Incorporated. All Rights Reserved.

Table 3 - EqualityComparable

Al

Adobe

Value Semantics

= Forall a, a == a (reflexive).

= |fa==Db, then b ==a (symmetric).

« Ifa==Db,and b == ¢, then a == c (transitive).

= lla==b) & al=h.

= Ta(b) impliesa==b.

= Ta;a=b < Ta(b).

= Ta(c); Tb(c);a=d;thenb==c.

= Ta(c); T b(c); modify(a) thenb ==cand a!=bh.

= If a==Db then for any regular function f, f(a) == f(b).

2006 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

Challenges

= Language Support for Concepts

= Extending Concepts to Runtime

= Replacing inheritance as a mechanism for polymorphism

= Constructing a Library of Algorithms and Containers

= STLis only a beginning - must be considered an example

Question: Is this enough to build an application?

Al

20
2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Better by Adobe>

) Ol

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Current Design of Large Systems

= Networks of objects form implicit data structures.

= Messaging among objects form implicit algorithmes.

= Design Patterns assist in reasoning about these systemes.

= Local rules which approximate correct algorithms and structures.

= |teratively refine until quality is “good enough.”

22
2006 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

Event Flow in a Simple User Interface

Height Event
Handler

Dialog Width
: Setup _
Percent f

Event
Handler

Const.

Event
Handler

Script

U"’ Validation

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Facts:

= 1/3 of the code in Adobe’s desktop applications is devoted to event
handling logic.

= 1/2 of the bugs reported during a product cycle exist in this code.

y FA\

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

If Writing Correct Algorithms is Difficult...

= ...Writing correct implicit algorithms is very difficult.

= We need to study what these implicit algorithms do, and express the
algorithms explicitly on declared data structures.

i} Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Declarative Programming

= Describe software in terms of rules rather than sequences of instructions.

= Rules define a structure upon which solving algorithms can operate.

= Examples of non-Turing complete* systems:
= Lex and YACC (and BNF based parsers)
= Sequel Query Language (SQL)
= HTML (if we ignore scripting extensions)

= Spreadsheet

= Can be Turing complete (i.e. Prolog).

= But Turing complete systems lead us back to the complexity of algorithms.

*Some of these systems are “accidentally” Turing complete or support extensions that make them Turing
complete (such as allowing cycles in a spreadsheet engine). In practice though, this can often be
effectively ignored and disallowed.

§ Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

STLab Research: “Declarative Ul Logic”

= Definition: A User Interface (Ul) is a system for assisting a user in selecting a
function and providing a valid set of parameters to the function.

= Definition: A Graphical User Interface (GUI) is a visual and interactive system
for assisting a user in selecting a function and providing a valid set of
parameters to the function.

= We're starting with what it means to assist the user in providing a valid set of
parameters to a function...

Al

2 Adobe

2006 Adobe Systems Incorporated. All Rights Reserved.

Demo

} QO

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Imperative Solution to Mini-Image Size

#import. *ImageSizeController.h’

#import <Foundation/NSNumberFormatter,h>
#import <Foundstion/NSWotification.h>
#import <AppKit/NSTextPield. b

#impore <nsth.h>

#import <stddef 1>

/4 Here is the class declaration for the controlle
Binterface mxmmmu.x + Nsobjest {
seld,
faoutlet id conatrainProportionssox ;

180ut Lot id usePercentagosBoX
T50ut Lot NSWunbexFormatter *pixelFormatter_;

TR0utlet BavumberFormstter perosntRormatter;
“privat
Tt nsetamiqueieets s

double m,mmm..; i
B00L constrainProportions
B00L usePercentages ;

)

= (void) showideh;

- (void) showtieight;

- (void) showAll;

- (18Action) heighthction: (id)sender;

- (18Action) widthAction: (id)sender

- (18Action) constrainproportionshction: (id)sender;
- (18Action) usePercentageshction: (id)sender;
- (18Action) apply: (id)sender;

- (TBhction) revert: (id)sender;

- (v0id) awakeFromNib;

sand

@implementation TnagesizeController
/% Update the wideh field, +/

- (vold) showRideh {

usepercentages_) {

TextField setDoubleValusAndrormatter(
widthPield , .
percentrormatter)

) elae
Texshleld actlntialuchndrormatter(
ield , widthbixels , pixelformstter);

/¢ Update the height field. o/

- (w;ﬂ) showtieight. {
et) {
1d_setDouble

ot IntvalueAndrormatt
mmn-\a T hetshirixels , pixelrormtter_)i

/% Update width and height fields. +/

- (void) showidthAndiieight (
[self showidth);
[self showhieight |;

/+ Update all controls. +/

- (void) showAll {
{ self showidthAndHeight 1)
{ ereperorntagubis_ suistatar
saerercentages_? Koondtate NOEggtate
[constrainproportionssox_ setstate
constxainProportions_ ? NoOnstate : NEOEfState J;

s Bovert ho width and boight. Thin vorks regurdless of
the checkbox atate

~ (vold) revertwidehAndeight (
widthPixels_ = initielRidehPixel
widthPercentage_ = 100.0;

Beightpinels. = initialtightpisels s
heightpercentage * 100.0;

[self showkidthAndlieight |;

/% The revert button does its work via
reverthidthAndieight. ¢/

- maction) peverts (id) sender {
{ 561 revertwidehandseight 17
)

the width and

7+ Handle the apply button by copying ove
lues. If wo are

height. This also sets the percentage

displaying
for pixels

rcentages, then we need to update. We update
well i this forced any rounding. +/

- (zshotion) apply: (id) seader {
initialiidthpixels = widehpixel:
widthercentage_ = 100.0;

initiallieighepixel
beightpercen

= heightPixels ;
*7100.05

[selt showkidthhndieicht |5

/4 Handle

n event from the use percentages checkbox. */

- unmun) usePercentageshction: (id) sender {
newUsePercentages = sender state | == NSOnstate;
m .-um-umu;- 1= usepercentages_) {
* nevtiaperomtagee]
T o dtnne e 17

/% Handle an event from the constraln proportions checkbox.
o

- (3heelon) constralnproportionshotiont (Ld) sender (
onstrainProport
| sonder state | sonstater
i8¢

£5{ sevconstcaisbropoctions) {
[521 revershidehAndieight |

/4 The following routines handle conversion between pixels
and percentages for width and height.

~ (void) widthPixelaPronpercentage {
nt)

* widthporcentage_

71000 4 0.5)7

- (void) widthPercentagerxonpixels {
widthPercentage_ =
dehPixels_ * 100.0 / initialwidehpixels ;

- (void) heighteixelsPronPercentage {
beightpixels = (ist)
floor(initialieightpixels + heightPercentage
100.0 4 0.5)3

- (void) heightPercentagetronPixels {
heightrercentage_ =
beightpixels_ + 100.0 /

initialkeightpixels_;

/% Process a change to the width field. */

- (tBAction) widthAction: (id) sender {
i(vaePorcentages_) {

tage_ =
Toxtriold unt'mu-dn“blwnl\n(sonder);
£ widtheixeleFronpercentage |;

B
wimiotale
xtField mﬂmdmmu.(sender);
t selt widihrescence agePronpixels

i£(constrainproportions_) {

heic - ithPercentage ;
[self heightPixelaFromPescentsge |7
[self shovtieighe)7

/4 Process a change to the height field. */

- (18Action) heightAction: (id) sender {
i£(uaoporcentages_) (
heightpercentage_ =
Toxtriold_unfornattedboublevalus(sonder);
[solf heightPixelaFxonpercentage |;

) else {
heightpixels_ =
Textileld untorsattedlutialus(sender);
[selt lml’hmxunnle!raﬂ

££(constrainroportions_) {
widtheerceatage = heightPersentage ;

(self widehPixelafronbercentage |

{ self showiideh)y

/+ When ve stet up, we want to set initial values. This

would ordinarily be
hat was cresting the controller sad then

running it with the dialog

NIB, bt ve area's wersying abovt that bere. +/

- (vok) evehetzemib {
tialuidehpixels = widthblxels = 400;
= heightpixela_ = 300;

usePercentages_ =
[=elf showAll |;

eond

2006 Adobe Systems Incorporated. All Rights Reserved.

29

A

Adobe

Declarative Solution

sheet mini_image_size

{

input:
original_width : 5 * 300;
original_height : 7 * 300;

interface:
constrain : true;
width_pixels : original width <==round(width_pixels);
height_pixels : original_height <==round(height_pixels);
width_percent;
height_percent;
logic:
relate {
width_pixels <== round(width_percent * original width / 100);

width_percent <== width_pixels * 100 / original_width,;
}
relate {
height_pixels <==round(height_percent * original height / 100);
height_percent <== height_pixels * 100 / original_height;
}
when (constrain) relate {
width_percent <== height_percent;
height_percent <== width_percent;
}
output:
result <== { height: height_pixels, width: width_pixels };
}

30
2006 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

Structure of Simple User Interface

original_width

2006 Adobe Systems Incorporated. All Rights Reserved.

width_pixels

width_percent

result

height_pixels

original_height

height_percent

constrian

31

Al

Adobe

Future of Software Development

= 85% of existing code base can be replaced with small declarations and a
small library of generic algorithm:s.

= Formally describe application behavior by expressing algorithm
requirements and structure invariants.

= Extend the ideas from STL to encompass richer structures with full
transaction semantics.

= Shift polymorphic requirements from objects to containers allowing generic
programming with runtime polymorphism.

} Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

Better by Adobe>

i} QO

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe

