
AAF To XTL conversion for Window Media Series 9

Prepared for: BBC Technology

Prepared by: Jim Trainor
 James Trainor Engineering Inc.
 519-896-7165
 j.trainor@rogers.com

Revision History:

• Initial revision, 3 Oct 2003

 1

1 Introduction
XTL is Microsoft’s representation of editing metadata and is supported by Windows
Media Series 9. XTL represents sequences of audio and video segments with transitions
and effects. AAF files represent the same thing. XTL provides the means by which AAF
files can be supported by Microsoft Windows Media 9.

To support an AAF file in Microsoft Windows Media, software must be developed to:

• Convert AAF editing metadata to its XTL equivalent.

• Provide a means to access audio and video essence that is embedded inside an
AAF file.

This document addresses only the former: AAF to XTL metadata conversion.

Familiarity with both AAF and XTL is assumed.

XTL is a set of XML elements with containment relations represented informally in
figure 1. An XTL timeline contains one or more groups (i.e. audio or video), each group
contains a composition that is comprised of any number of tracks (i.e. the essence data),
transitions, effects, and other compositions.

timeline

group

composite

composite track transition effect

Figure 1 – Simplified representation of XTL element containment.

The AAF object model represents a nearly identical structure, represented informally in
Figure 2. An AAF file contains a CompositionMob, the composition has one or more
MobSlots (which may represent audio or video), each MobSlot has a Sequence, and a

 2

Sequence is comprised of any number of SourceClips, Transitions, OperationGroups, and
other Sequences.

Composition
Mob

MobSlot

Sequence

Sequence SourceClip Transition OperationGroup

Figure 2 – Simplified representation of AAF object containment.

The parallels between the two are clear when represented this way.

This software implements AAF to XTL conversion by building a tree representing AAF
object containment (and other) relationships. Following this, the tree is traversed a
number of times to implement processing operations as required to bring it to a state
where its structure suitably represents that of XTL, and all required information to
generate XTL is available.

2 Design and Implementation
A small framework called “Aaf Input Framework” exists to support this representation of
an AAF file and the processing operations required to implement XTL conversion. The
“Aaf Input Framework” consists of:

• A base class for nodes in the tree.

• A base class for visitors that implement processing operations on nodes in the tree.

• A base class for objects that can decorate nodes of the tree.

• A tree builder that will generate an AifParseTree (see UML in figure 3) rooted in
any object in an AAF file.

 3

The “visitor” and “decoration” concepts are variations of the design patterns described in
the well known book: “Design Patterns” by Gamma, Helm, Johnson, and Vlissides.
These software design concepts are not described in this document.

The input framework is packaged in a library called “aiflib”. Any class prefixed with
“Aif” is part of this library.

Another library, “aif2xtl” implements specialized tree nodes, visitors, and decorations,
and provides the means to take a basic tree representing an AAF composition and process
it to produce XTL. The class prefix for classes in this library is “Aif2Xtl”.

A simple command line program called “aaf2xtl” uses these libraries to implement a
small aaf to xtl utility.

 4

2.1 Tree and Tree Nodes
Figure 3 represents, in UML, the structure of the classes that represent nodes in the tree,
and the tree itself.

AifParseTreeNode
1

-parent

0..1

AifParseTreeNode 1

-children

*

AifParseTreeNode

DecorationStackMap
1 -decorations

1

AifParseTree

1

-root1

Aif2XtlParseTreeNode

AifParseTreeNodeFactory

1

-anAAFObject

0..1

IAAFObjectSP

«uses»
creates

AifParseTreeBuilder

«uses»

«uses»
creates

«uses»
creates

Aif2XtlStandardTypedNode

Type

Aif2XtlSourceClipNode

1

-anAAFObject0..1

IAAFSourceClipSP1

-aSourceClip1

IAAFSmartPointer

Type

Aif2XtlCompMobNode

Aif2XtlTimelineMobSlotNode

Aif2XtlSequenceNode

Aif2XtlMasterMobNode

Aif2XtlCDCIDescriptorNode

Aif2XtlWaveDescriptor

Aif2XtlNetworkLocator

Aif2XtlTransition

Aif2XtlTaggedValue

Aif2XtlStandardNodeFactory

IAAFType, Aif2XtlNodeType

Aif2XtlGroupNode

Figure 3 – UML representing the structure of Aif, and Aif2Xtl, tree nodes and
related classes.

 5

Node Class Synopsis

AifParseTreeBuilder This is a small utility class that uses the
“recursive iterator” implemented in AxLib to
build a tree of AAF objects. The class in axLib
is AxBaseObjRecIter, found in the
example2/axLib directory included with AAF
SDK. (Note, the current implementation is
actually just a function, not a proper class.)

AifParseTreeNodeFactory This is the factory base type used by
AifParseTreeBuilder to create tree nodes for
each AAF object it encounters in a file. It has a
default implementation that creates instances of
generic AifParseTreeNode objects.

Aif2XtlStandardNodeFactory This is the specialized factory implementation
used to create specialized tree nodes to
represent the AAF objects we are interested in
insofar as XTL conversion processing is
concerned.

AifParseTree This is a small class that contains the root node
of a tree. One could easily forgo its use and
simply use the root node directly.

AifParseTreeNode The base class for all nodes in the parse tree.
This object optionally stores an AAF object.
There is currently only one instance where no
AAF object is stored. That is the
Aif2XtlGroupNode. A node has a parent (null
for the root node) and an ordered set of
children.

Aif2XtlParseTreeNode Specialized version of AifParseTreeNode used
to represent AAF objects, and other nodes, that
require special treatment insofar as XTL
conversion processing is concerned.

Aif2XtlStandardTypedNode This is a standard templated implementation of
Aif2XtlParseTreeNode.

Aif2XtlSourceClipNode AAF SourceClips require special treatment that
could not be accommodated by
Aif2XtlStandardTypedNode. This class exists
to support that special treatment.

 6

Node Class Synopsis

DecorationStackMap This supports decoration objects of arbitrary
type and number that can be pushed onto any
node instance. This is actually a typedef. The
defined type is
map<char*,stack<AifParseTreeNodeDecoration
>>. The map key (char) is the type name of
any object derived from
AifParseTreeNodeDecoration.

The parse tree is rooted in the first CompositionMob found in the AAF file. A typical tree
produced by the builder will look something like that in figure 4.

Composition
Mob

Timeline
MobSot

Timeline
MobSlot

Sequence

SourceClip Transition SourceClip

Timeline
MobSlot

.

.other elements
of sequence

other elements
of sequence

Figure 4 – Typical tree of AAF objects, rooted in a CompositionMob, produced
by AifTreeBuilder.

Note that the leaves of the tree in Figure 4 are SourceClip objects. The SourceClips have
a reference to a MobSlot in a MasterMob that in turn refers to a chain of SourceMob
objects. The builder does not create a tree than includes the MasterMob and SourceMob
objects because these objects are only referenced, not contained, by the SourceClip object
in the AAF file.

A visitor implementation is used to locate all the SourceClip objects, resolve the
MasterMob and SourceMob references, and add these objects to the parse tree.

2.2 Visitors
Figure 5 represents, in UML, the structure of the visitor classes.

 7

+PreOrderVisit(in node : AifParseTreeNode&)
+PostOrderVisit(in node : AifParseTreeNode&)

AifParseTreeVisitor

Aif2XtlDumpVisitor and Aif2XtlParseTreeVisitor have
one polymorphic PreOrderVisit() and PostOrderVisit()
method for each of the following node types:

Afi2XtlParseTreeNode
Afi2XtCompMobNode
Afi2XtSourceClipNode
Afi2XtTimelineMobSlot
Afi2XtSequenceNode
Afi2XtMasterMobNode
Afi2XtSourceMobNode
Afi2XtCDCIDescriptorNode
Afi2XtWaveDescriptorNode
Afi2XtGroupNode
Afi2XtTransitionNode
Afi2XtTaggedValueNode

+PreOrderVisit(in node : Aif2XtlParseTreeNode&)
+PostOrderVisit(in node : Aif2XtlParseTreeNode&)
+PreOrderVisit(in node : Aif2XtlCompMobNode&)
+PostOrderVisit(in node : Aif2XtlCompMobNode&)
+PreOrderVisit(in node : Aif2XtlSourceClipNode&)
+PostOrderVisit(in node : Aif2XtlSourceClipNode&)
+PreOrderVisit(in node : Aif2XtlTimelineMobSlotNode&)
+PostOrderVisit(in node : Aif2XtlTimelineMobSlotNode&)
+etc()

Aif2XtlDumpVisitor

+PreOrderVisit(in node : Aif2XtlParseTreeNode&)
+PostOrderVisit(in node : Aif2XtlParseTreeNode&)
+PreOrderVisit(in node : Aif2XtlCompMobNode&)
+PostOrderVisit(in node : Aif2XtlCompMobNode&)
+PreOrderVisit(in node : Aif2XtlSourceClipNode&)
+PostOrderVisit(in node : Aif2XtlSourceClipNode&)
+PreOrderVisit(in node : Aif2XtlTimelineMobSlotNode&)
+PostOrderVisit(in node : Aif2XtlTimelineMobSlotNode&)
+etc()

Aif2XtlParseTreeVisitor

Aif2XtlEssenceExtractVisitor

Aif2XtlGroupVisitor

Aif2XtlMobSelectVisitor

Aif2XtlObjectMarkForRemovalVisitor

Aif2XtlSeqEditVisitor

Aif2XtlSourceClipVisitor

Aif2XtlTransitionVisitor

Aif2XtlXmlGenVisitor

Aif2XtlObjectRemoveMarkedVisitor

Figure 5 – UML representing the structure of Aif visitor base class and derived
Aif2Xtl visitor implementations.

Visitor Class Synopsis

AifParseTreeVisitor Visitor base class.

Aif2XtlParseTreeVisitor Visitor implementation that extends
AifParseTreeVisitor by adding
polymorphic Visit() methods for each
of the node types defined in the
Aif2Xtl library.

 8

Visitor Class Synopsis

Aif2XtlGroupVisitor Inserts one audio and one video group
node as children of the composition
mob node and reparents the
composition mob's timeline slots
accordingly.

Aif2XtlSourceClipVisitor Visits a composition’s SourceClip
nodes and resolves the referenced
MasterMob. It then follows the chain
of SourceMobs referenced by the
MasterMob and adds each SourceMob
in the chain as a child of the
MasterMob’s SourceClip.

Aif2XtlMobSelectVisitor This selects one mob in each mob
chain for further processing.

Aif2XtlTransitionVisitor Visits transitions and determines if the
transitions are supported by XTL. The
cut point is also read from the AAF
object and saved for possible later use.

Aif2XtlSeqEditVisitor This computes the edit points along
the XTL timeline for each segment
(e.g. SourceClip) in each sequence in
the tree. The visitor processes both
cuts and transitions, and determines
the segment’s start and stop points.
These start/stop points are later used
by the Aif2XtlXmlGenVisitor.

Aif2XtlEssenceExtractVisitor This visits all SourceMobs and
determines if the referenced essence
data is in the AAF file. If it is, the
essence is extracted and written to an
external file. This is a work around
that is required until a plugin exists
for Windows Media that can read the
essence directly out of the AAF file.

 9

Visitor Class Synopsis

Aif2XtlObjectMarkForRemovalVisitor Some objects in the AAF file are not
required and can cause problems if not
removed from the parse tree. In
particular, the TaggedValue objects
that appear in Avid’s AAF files. This
visitor marks (i.e. places a decoration
on) these objects so that they can be
removed by the
Aif2XtlObjectRemovedMarkedVisitor

Aif2XtlObjectRemovedMarkedVisitor This visitor locates all objects that are
marked for removal and removes them
from the tree.

Aif2XtlXmlGenVisitor This visitor generates the XTL output.
It writes it to an ostream supplied as
an argument of the class’ constructor.
This visitor depends on the results of
the processing operations executed by
all previous visitors. It will look for
node decorations that have the
information it requires to generate the
xtl, e.g.: editing information, transition
information, the location of extracted
essence, etc.

Aif2XtlDumpVisitor Dumps a text representation of the
parse tree. Used for debug only.

The Aif2XtlGroupVisitor and Aif2XtlSourceClipVisitor modify the tree as described in
the synopsis above. Figure 6 shows the additional nodes that are created, and inserted, by
the Aif2XtlGroupVisitor and the Aif2XtlSourceClipVisitor. Aif2XtlSourceClipVisitor
uses the AifParseTree builder to create the subtrees that become children of each
SourceClip.

 10

Composition
Mob

Sequence

SourceClip Transition SourceClip

Timeline
MobSlot

MasterMob

Timeline
MobSlot

SourceClip

SourceMob SourceMob

Timeline
MobSlot

SourceClip

Timeline
MobSlot

SourceClip

Essence
Descriptor

Essence
Descriptor

. . .

Mob chain
represented as

children of
SourceClip. The
SourceClip Visit()

implementation only
visits one branch of

the tree.

Only the slot
referenced by a

SourceClip is added
to the tree.

XTL timeline

Xtl Group
XTL group

CompostionMob
timelines are

grouped into audio
and video types.

Xtl Group nodes are
inserted to represent

the group types.

XTL composite

XTL track, clip, and
transition

CompositeDecoration

TransitionInfo

UnmasteredSourceClipDecoration
SequenceEditInfo

SequenceEditInfo
UnmasteredSourceClipDecoration
SequenceEditInfo

TransitionInfo

AudioGroupInfo
VideoGroupInfo

ExtractedEssenceInfo

Figure 6 – The tree shows the nodes added by the Aif2XtlGroupVisitor and
Aif2XtlSourceClipVisitor. Also shown, underlined, are the decorations placed
on the nodes, and used by, various visitor implementations. The nodes that
directly correspond to XTL output generated by the Aif2XtlXmlGenVisitor are
also noted.

The visitor interface has polymorphic PreOrderVisit() and PostOrderVisit() methods.
This means that for each node, the visitor is called before and after the child nodes are
visited. This is used, for example, by the Aif2XtlXmlGenVisitor to generate opening and

 11

closing XML syntax. In the case of the CompositionMob node, the
Aif2XtlXmlGenVisitor::PreOrderVisit(Aif2XtlCompMobNode&) method is called and
outputs <timeline>, the child nodes are traversed and generate their XTL, then
Aif2XtlXmlGenVisitor::PostOrderVisit(Aif2XtlCompMobNode&) is called and
generates the </timeline> closing syntax.

2.3 Decorations
Decorations are a simple means to attach arbitrary information to a node in the tree. Any
number of decorations of any type can be attached a node. Each node maintains a stack
for each type of decoration that is pushed onto the node. Decorations must derive from
AifParseTreeNodeDecoration. Visitor implementations create instances of concrete
decorations and push those onto nodes. Subsequent visitors can check if a decoration of a
particular concrete type exists, and optionally pop it off the node’s decoration stack.

To manage multiple decoration types, AifParseTreeNode maintains a map of stacks of
AifParseTreeNodeDecoration pointers. The map key is a string that is the type name of
the concrete decoration type stored in the stack. The type name is generated using the
runtime type info provided by the C++ typeid operator.

The complexity of managing multiple decoration types if hidden in the templated
AifParseTreeNode IsDecorate(), GetDecoration(), PushDecoration(), and PopDecoration()
methods. Users of the decoration methods, of course, have are not exposed to the type
name mapping details.

Figure 6 is the UML representation of the current set of decoration implementations.

AifParseTreeNodeDecoration

Aif2XtlGroupInfo

Aif2XtlTransitionInfo

Aif2XtlUnMasteredSourceClipDecoration

Aif2XtlExtractedEssenceInfo

Aif2XtlSequenceEditInfo

Aif2XtlMarkForRemoveInfo

CompositeDecoration

Figure 7 – Node decoration classes.

Decoration Class Synopsis

AifParseTreeNodeDecoration Base class for all decorations.

 12

Decoration Class Synopsis

Aif2XtlGroupInfo Attached to Aif2XtlGroupNode objects.
Stores the group type: audio or video.

Aif2XtlTransitionInfo A transition info decoration is created
and attached to a
Aif2XtlTransitionNode by
Aif2XtlTransitionVisitor, and moved to
the preceding Aif2XtlSourceClipNode
by Aif2XtlSequenceEditInfo. It stores
information required to generate XTL
transition output.

Aif2XtlSequenceEditInfo This object is placed on each segment in
a sequence. It contains a segment’s start
position, end position, essence data
offset, and edit rate, required by the
Aif2XtlXmlGenVisitor.

Aif2XtlMarkForRemoveInfo This is placed on nodes by the
Aif2XtlObjectMarkForRemovalVisitor.
The
Aif2XtlObjectRemoveMarkedVisitor
then removes nodes tagged with the
decoration.

Aif2XtlExtracedEssenceInfo This decoration is pushed onto
Aif2XtlSourceMobNode nodes and
identifies the name of the external file
where extracted essence data is stored.

Aif2XtlUnMasteredSourceClipDecoration At various stages in the processing it is
useful to distinguish source clips that are
“unmastered” (i.e not an ancestor of a
master mob). This decoration is used for
that purpose. It is placed on these nodes
by Aif2XtlSourceClipVisitor before the
master mob sub trees are built and
appended to the tree.

CompositeDecoration This is used by Aif2XtlXmlGenVisitor
to implement a processing operation that
avoids outputting empty XTL
<composite><\compostion> elements
for empty sequences, e.g. a sequence
that contains only an AAF Filler object.

 13

3 Example
The file demonstrated at the IBC 2003 press conference is:

samples/on_site_ibc03/press_conference_from_avid.aaf
This is a short sequence of 5 segments without transititions (i.e. cuts only). The following
command generates XTL describing this sequence:

aaf2xtl –file samples/on_site_ibc03/press_conference_from_avid.aaf
The resulting xtl output is in Appendix 1. If the output is redirected to a file, the
Windows Media 9 player can play that file. Read the instructions in aif/msxtl/ReadMe
concerning xtl file support in the player.

This file has embedded DV video essence and embedded wave audio essence. Currently,
no means exists for the Windows Media 9 player to read embedded essence. Until such
support exists, the essence must first be extracted. This only needs to be done one time.
The command is:

aaf2xtl –file samples/on_site_ibc03/press_conference_from_avid.aaf -extess

By default, this writes the extracted essence files to c:/tmp/aaf2xtl_essence. The file name
is constructed using the SourceMob (and EssenceData) ID. The video essence is assumed
to always be in DV format and the file is suffixed with “.dv”. Windows Media 9 does not
support .dv essence in this form. The .dv files must be converted to .avi before the
resulting XTL will successfully play using the Windows media player. For the purposes
of the demonstration at IBC 2003, this conversion was done using a utility called
“DVFileConverter” available at http://www.dvunlimited.com.

If the AAF file is passed as the only argument to aaf2xtl a temporary xtl file is written to
c:/tmp/aaf2xtl.xtl and a Windows media player process is created to play this file. The
command is simply:

 aaf2xtl samples/on_site_ibc03/press_conference_from_avid.aaf
This will play successfully only if the essence data has already been extracted.

4 Appendix 1 – Sample xtl file generated by aaf2xtl.
This is the xtl representation of the AAF file used for the IBC 2003 AAF interoperability
press conference. It was generated with the command:

aaf2xtl –file samples/on_site_ibc03/press_conference_from_avid.aaf
Note: The filenames contain full mob IDs. They have been shortened to fit on a single
line here.

<timeline>

 <group type="audio">
 <composite>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935c-1625-001b.wav"
 start="0:0:0.000" stop="0:0:7.040"

mstart="0:0:0.000"/>

 14

 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f609363-31ac-001b.wav"

 start="0:0:7.040" stop="0:0:12.240"
mstart="0:0:0.000"/>

 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f609361-2b34-001b.wav"
 start="0:0:12.240" stop="0:0:19.679"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935f-22c8-001b.wav"
 start="0:0:19.679" stop="0:0:24.399"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/03f60935d-1c11-001b.wav"
 start="0:0:24.399" stop="0:0:28.920"

mstart="0:0:0.000"/>
 </track>
 </composite>
 <composite>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935c-1683-001b.wav"
 start="0:0:0.000" stop="0:0:7.040"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f609363-3219-001b.wav"
 start="0:0:7.040" stop="0:0:12.240"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f609361-2b92-001b.wav"
 start="0:0:12.240" stop="0:0:19.679"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935f-2316-001b.wav"
 start="0:0:19.679" stop="0:0:24.399"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935e-1c6f-001b.wav"
 start="0:0:24.399" stop="0:0:28.920"

mstart="0:0:0.000"/>
 </track>

 15

 </composite>
 </group>
 <group type="video" width="720" height="576" framerate="25.0000">
 <composite>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935a-0fcd-001b.avi"
 start="0:0:0.000" stop="0:0:7.040"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f609362-2c5d-001b.avi"
 start="0:0:7.040" stop="0:0:12.240"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935f-23c2-001b.avi"
 start="0:0:12.240" stop="0:0:19.679"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935e-1d1a-001b.avi"
 start="0:0:19.679" stop="0:0:24.399"

mstart="0:0:0.000"/>
 </track>
 <track>
 <clip
 src="c:/tmp/aaf2xtl_essence/3f60935c-172f-001b.avi"
 start="0:0:24.399" stop="0:0:28.920"

mstart="0:0:0.000"/>
 </track>
 </composite>
 </group>
</timeline>

