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Abstract

Percentiles are convenient indices to characterize the entire range of the values of simulation outputs.
However, they have only seldom been used in simulation studies. One of the reason has been the lack
of sequential estimation procedures, which are needed to obtain estimates of predefined accuracy.

In this paper we introduce a sequential procedure for estimating several percentiles simultaneously.

The procedure uses the extended P? algorithm to estimate the percentiles. The variances of the
percentile-estimates are estimated using a spectral method. Since the method applies a Bonferroni
inequality, the covariances between the percentile-estimates are not needed. The procedure is shown
to produce estimates having the predefined accuracy in eight queueing network models, representing

multiprogrammed and time-shared computer systems.
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1. Introduction

In most simulation studies the mean values of output data have been analyzed. However, in many
situations the means provide an insufficent or even a misleading characterization of the output
data. On the contrary, a suitably selected set of percentiles reflects all the essential distributional

features of the phenomenon analyzed by simulation. Percentiles have only seldom been used in
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simulation studies. We believe that the reason is the complexity of percentile estimation. The
calculation of estimates has been regarded as a too cumbersome task in discrete event simulation.
The accuracy estimation is not a simple task since the output sequence is, in general, autocorrelated.
Therefore, sophisticated approaches are necessary to obtain an estimate of the accuracy. Only a
few papers have been published about the estimation of percentiles in simulation context. Methods
of estimating a single percentile and its variance have been introduced in [9, 15, 20, 21, 7]. All

these methods are based on a fixed, predefined length of output sequence.

One of the basic problems in sequential estimation of percentiles is that the whole output
sequence must be stored and (at least partially) sorted if the estimates are based on the order
statistics. The P? algorithm [10] solves the problem if a single percentile is to be estimated.
The algorithm estimates single percentiles without storing and sorting the observations. In [17]
we introduced the extended P? algorithm that estimates several percentiles simultaneously. The

extension is important since a single percentile estimate is sufficient only in a few specific situations.

The use of sequential estimation procedures where the length of a simulation run is not pre-
defined is of practical importance. Estimates produced by a simulation usually have an accuracy
requirement determined by the application. The analyst wants to obtain estimates, which meet
his or her accuracy requirement. Running the simulation less than it is necessary to satisfy the
accuracy requirement would not provide the information needed. On the other hand, longer runs

would be a waste of computing time; see also the conclusions in [14].

In one-dimensional situations the accuracy requirement is usually given as the maximum rel-
ative half-width of the confidence interval. In [18] we proposed a sequential procedure for simul-
taneous estimation of several percentiles. There we generalized the relative half-width criterion to
multidimensional situations using a relative Eucledian distance. In this paper we will introduce

another sequential procedure based on another accuracy requirement.

When a one-dimensional estimate § satisfies the given maximum relative half-width criterion
of the confidence interval (¢, a), we have a confidence of at least 1 — a that the true, unknown value
§ lies in the interval [ (1—¢)8, (14+¢)@]. In many situations the components of a multidimensional
estimate, 6 = (él, .. .,ém)’, are of interest both as single independent values and as a vector. In
such a situation it is natural to require that all the components of the vector satisfy simultaneously

a relative half-width criterion.

In this study we apply the following accuracy requirement: The estimate 6 is accuracte enough,
if we have a confidence of at least 1 — a that the components of the true unknown vector @ are in
the intervals [(1—e1)01, (14 €1)81], ..., [(1 = £,)8m, (1 + £,,)8,] or, in other words

PI’{|01 _é1| < 51|é1|7-"7|0m - ém| < 5m|ém|} > l—a.

Hence, the accuracy requirement is specified by (£1,...,&m,a).
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The current procedure has three important advantages over that given in [18], which was to
best of our knowledge the first sequential procedure for simultaneous estimation of several per-
centiles. First, only variances of the percentile estimates, not the covariances between them, need
to be estimated. This is due to the applied accuracy requirement allowing the use of a Bonferroni
inequality. Secondly, the sequence length need not be double between successive tests of termi-
nation condition, since we use segmentation in the variance estimation. The third advantage is
in the assumptions about the stochastic properties of the output sequence. The procedure given
in [18] assumed that the percentile estimates have a multinormal limiting distribution. The cur-
rent procedure assumes only that each marginal distribution is asymptotically normal. Hence the
usual ¢-mixing condition, not a stronger one, should be satisfied. The method of estimating the
percentiles, and their variances and evaluating the accuracy measure are described in the following

section.

The simulation experiments are reported in the last section. We analyzed the response time
sequences from simulations of eight different queueing network models. The analyzed models are
networks of 2—-6 servers that represent multiprogrammed and time-shared computer systems. The
experiments were performed in three phases. The first two of them were initial verifications of the
extended P? algorithm and the method of estimating the variances. In the last phases we applied

Oth

the proposed sequential procedure to estimate the 50", 75t and 90" percentile of the response

times from each of the eight models.

2. Description of the Method

We apply the extended P? algorithm to estimate several percentiles simultaneously. In this section
we describe how the variances of percentile estimates can be estimated. In addition, we give an
accuracy requirement for multidimensional estimates, such as a set of percentiles. Finally we show
how a mechanism to control the run length of simulation can be established using the estimated
variances and a Bonferroni inequality. Before these topics we give a short description of the extended

P? algorithm. The detailed algorithm is given in [17].

Estimating Percentiles with the Extended P2 Algorithm

A straightforward method of estimating percentiles is based on sorting (at least partially) the
observations. Suppose that a sequence of N observations {Xj}{v is available. Let X(;) denote
the j** observation in the ordered sequence; Xay £ X2 £ -+ £ X(w)- In other words, X(; is
the j** order statistic. Based on the order statistics the estimate of the 100pt" percentile, Tp, 1S

X([1+(N=1)p)), Where [-] denotes rounding to the nearest integer.
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Figure 1: Example of Marker Update
Since d; < n; — 1, n; is decreased by 1 and new ¢; is evaluated.

Instead of storing and sorting the observations, the extended P? algorithm approximates the
inverse of the empirical cumulative distribution function by a piecewise-parabola. The approxima-
tion is done by maintaining the ‘marker information’. Each marker has a height, an actual position,

and a desired position. Each marker is associated with the estimation of a specific percentile.

Suppose that a marker is used to estimate the 100pt® percentile of the sequence {X],HV_ Now
the desired position of the marker is 1 + (N — 1)p. The algorithm tries to keep the actual position
of the marker, n, close to [1 + (N — 1)p]. The height approximates the value of X, and is thus an

estimate of x,.

Suppose that percentiles z,,,...,z,,, are to be estimated. The algorithm maintains m+2 prin-
cipal markers and m+1 middle markers. The principal markers are used to estimate the minimum,
the required percentiles, and the maximum. FEach middle marker estimates the percentile at the
point midway between two adjacent principal markers. The objective of the middle markers is to

stabilize the updates of the marker information.

The markers are updated, if necessary, after each observation. After N observations, the
actual and desired positions of the markers at the minumum and at the maximum are 1 and

N, respectively. Their heights are the minimum and the maximum values in the sequence. The
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updating of the actual and desired positions of the other markers is simple. The actual position of
each marker the height of which is greater than the observation is increased by one. If the actual
position is now off to the left or to the right of its desired position by more than one position, then
the height and the actual position are adjusted. The adjustment of the marker height is done using
either a piecewise-parabolic or a piecewise-linear formula. The parabolic formula is preferable but
sometimes the linear formula must be used in order to keep the marker heights in a nondecreasing

order. Figure 1 demonstrates the updating.

The parabolic formula assumes that the curve passing through any three adjacent markers
is of the form ¢ = an? + bn; + ¢, where ¢; is the height and n; is the actual position of the
i marker. The movement of the actual position of a marker is always only one position. The

parabolic adjustments are

d Giv1 — G
=g+ —— (=i I (1)
Nit1 — N—1 Niy1 — 1y
4 — ¢i—1
i )
‘|‘(n2—|—1 n; )nZ — 9
ng—mn; + d,
where d = 1, if the movement is to the right, and d = —1, if the movement is to the left.
The linear adjustments are
Gdi+d — G:
¢ = q+dT— (2)
Nipd — 1Y

n, «— n;+d.

Although the extended P? algorithm proceeds only one observation at a time, we collect the
observations in segments, each of length N,. The first segment is used to initialize the algorithm.
The initialization is based on the order statistics. The actual positions are initialized to n; = [d;],
where d; is the desired position of the i*® marker, i = 1,...,2m + 3. Then it is checked that the
actual positions are strictly increasing. If not, some adjustments must be made. The heights are

then initialized to ¢; = z(,,)-

Estimating the Variance of Percentile Estimates

Although our percentile estimates are not based on the order statistics, we use the asymptotic
properties of the order statistics in estimating the variances of the percentile estimates. The
empirical results given in [17] and this paper indicate that the behaviour of the percentile estimates

based on the extended P? algorithm and the order statistics is usually very similar.
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When the output sequence {Xj}{v is stationary and satisfies the ¢-mixing condition, the per-
centile estimate &,, based on the order statistic, has a normal limiting distribution (see Appendix

I). Hence, as N becomes large, the variance of 2, can be approximated by
Var(i,) & hy(0) [ (N f(2,)%) (3)

where f(i#,) is the estimated (marginal) density of the X,’s at z,, and h,(w) is the estimated spectral

density of the binary process {/;(z,)} at frequency w:

1 if X, <ux,,
Li(2y) = L (4)
0 ,if Xj>uz,.

The extended P* algorithm approximates the inverse of the empirical cumulative distribution
function by a piecewise-parabola, F‘l(y) = ay? + by + ¢, in the neighbourhood of p. Hence the
density function can be approximated by f(z) = (b+ 2aF(z))~" in the neighbourhood of z,.

The spectral density of the binary process {/;(z,)} has a central role, when the variance of Z,
is estimated. The generation of this process requires that the whole sequence {X;} is available. The

problem of storing the whole sequence is avoided, when {I;(z,)} is approximated by the process

{jjyk(jp)}:

s 1 ,if X0 <2pp . i
I k(8p) = PR =1, Ny k=1, K, (5)
0 , otherwise

where X is the 5™ item in the k™™ segment (the j + (k — 1)N,"™ observation), and &, is the

estimate of z, based on k segments (kN} observations).

In each segment we evaluate the spectral density estimates, ﬁk(wj), for j = 1,....n <
Nu/(4M + 2) by averaging 2M + 1 adjacent periodogram values of the sequence {IALk(aEp)};y:bl.

The overall spectral density estimates are taken as
2 1 K -
hp(w;) = thk(%‘)a (6)
k=1

where K is the number of segments. For details, see Appendix II.

A convenient method to estimate the spectral density at frequency 0 has been developed in
[8]. A low order polynomial is fitted to the logarithms of the smoothed periodogram values. We
apply a similar regression approach to construct an approximately unbiased estimate of h,(0) (see
Appendix III.
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Accuracy Requirement for Multidimensional Index

For a one-dimensional index #, such as the mean or a single percentile point, the accuracy require-
ment is usually given as the upper bound of the relative half-width ¢ for the confidence interval of
level 1 — . Using this requirement and asymptotic normality of the estimate g the simulation is

continued until
/0 < efta(1—a/2), (7)

where 42 is the estimated variance of § with d degrees of freedom, and t4(1—a/2) is the 100(1—a/2)t
percentile point of Student’s t-distribution with d degrees of freedom.

This requirement can be interpreted as Pr{|§ — 8| < £|d|} > 1 — . In other words, we have a
confidence of at least 1 — a to trust that the true value 8 is in the interval [(1 — )8, (1+¢)d]. A
natural extension to multidimensional situations, where the index of interest is 8 = (6y,...,60,,),
is to require that we have a confidence of at least 1 — « to trust that each of the components is in

the interval [(1 —¢;)8;,(1+¢;)8;], i.e.
Pr{l6; — 6;| <c;l0;]; j=1,...m}>1-a. (8)

Using a Bonferroni inequality (see e.g. [11, p. 41]) it can be concluded that the requirement (8) is
satisfied, if

Pr{l6; = 6;| <0} > 1-a; and Y a;<a. (9)

i=1

Suppose that the estimates are éj and their estimated variances §?, each with d; degrees
of freedom. Using the confidence intervals based on normal approximations, Pr{|§; — é]| <
8;tg,(1-ay/2)} = 1 — a;, the probabilities that [6; — 8;] < £;18;] can be solved:

a; = 2Fy, (—¢;16;1/5;) (10)

where Fy(t) is the cumulative distribution function of the Student ¢-distribution with d degrees
of freedom. Hence the criterion to terminate the simulation is > a; < a. If the criterion is not
satisfied, additional segments of observations must be generated in order to obtain estimates of

acceptable accuracy.

It is not necessary to evaluate the termination criterion after each segment. Since the 3;’s are
proportional to 1/4/K Nj, we can obtain a rough prediction for the number of segments, K’, which

is required to satisfy the termination criterion:

K'= K\ aj/a, (11)
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where K is the current number of segments, and the a;’s are based on current estimates, 6;, §?, d;.
Since K’ is only a rough prediction, we actually perform the next termination test after K seg-
ments, where

K" = min{2K, max{K + 2, K'}}. (12)
Implementation Details

The method described above has several internal and external parameters. The external parameters,
the ¢;’s and « are used to control the accuracy of the estimates. The problem of choosing suitable
values is application dependent. However, our experience is that values greater than 0.15 will not

provide stable estimates, since the variance estimates are based on asymptotic properties.

The internal parameters are N, M, and »n, i.e. the length of the segments, the degree of ‘local’
averaging, and the number of frequencies in the regression. The first two of them affect the variance
and the bias of the spectral estimates. Qur experience is that Ny = 512 or 1024 is a reasonabe
choice. The degree of ‘local’ averaging should be low, say M = 0 or 1/2. Higher values of M will
produce seriously biased estimates, if Ny is not increased. With M = 1/2 we have found that n
should be 21-35. If M = 0, n should be somewhat greater, about 35-50. In the experiments, we
used the following values: Ny = 512, M = 1/2, and n = 31.

3. Experimental Results

In the simulation experiments we analyzed three different questions. Our primary interest is the
sequential estimation of several percentiles simultaneously. However, before we studied the run
length control mechanism, we wanted to be sure that the extended P? algorithm and the variance
estimation method do not introduce serious errors. Hence, we first analyzed the behaviour of
the extended P? algorithm. The objective was to find out, whether the estimates based on the
proposed algorithm have similar first- and second-order characteristics as the order statistics. In
the second phase we studied the properties of the variance estimation method. Finally we analyzed

the mechanism to control the length of simulation runs.

Analyzed Models

Since our primary interest is in modelling computer systems, we selected models, which represent
them. In all the experiments we analyzed percentiles of the response times from eight different
models. The models are used in many simulation studies, for example in [12, 13, 19, 8]. Figure 2

contains a summary of the models.

Models 1-4 are the so called Buzen models [5]. They represent a multiprogrammed computer

system, where the number of active tasks is constant (N ). All the service times are exponentially
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Model 1 2 3 4
N 4 8 8 8
10-1 Scru 1 1 1 1
Sio-1 2 2 2.22 0.56
cPu Sro-2 2 2 20 5
10-2 Pro-1 0.5 0.5 09 09
Pro—z 0.5 05 0.1 0.1
Model 5: Population 35
TTY
Node Type Serv. Rate
unfinished jobs TTY IS 0.04
CPU RR* 1.25
CPU * quantum .1; overhead .015
Model 6: Population 40
TTY Node Type Serv. Distr.
TTY IS Exp(1/30)
CPU PS H3(0.3,0.8,12.5)
CPU 10 10 IS Exp(2)
Models 7 and 8
TTY
Model 7 8
10-1
Population 25 25
Srory 100 100
10'2 SCPU 1 1
SIO_l - 510_2 139 556
CPU SIO_3 - 510_4 125 25
10-3 Prry 0.2 0.2
Pro-1 = Pro-2 0.36 0.36
Pro—s = Pro—s 0.04 0.04
10-4

Figure 2: Analyzed Models
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distributed with means Scpy, Sro_1, and S;o_,. After completion of service at the CPU-node the
task enters either of the I0-nodes. The I0-node is selected according to probabilities p,,_; and

Pro—z- When a task leaves an [0-node, a new task simultaneously enters the CPU-node.

Models 5-8 represent time-sharing computer systems. The collection of user terminals is
modelled as an infinite server (TTY-node), where the waiting time for the service is always zero.
Its service time represents the ‘thinking-time’ between a task completion and the activation of the

next one.

In Model 5 all the service times are exponentially distributed. The scheduling policy in the
CPU-node is round robin: Each job receives service in quantums of fixed size. If the service is
not completed in a quantum, the job is removed into the end of the waiting queue. This model is

treated analytically in [1]. A detailed simulation study is given in [19].

Model 6 is a variation of the ‘standard’ queueing network, where service times have high
variability, see e.g. [25]. In the CPU-node service times are hyperexponentially distributed. A
hyperexponential distribution, Ha(7, 1, 12), is a special case of the general Coxian distribution.
The service time is a mixture of two exponential distributions: Exp(uq) with probability 7, and

Exp(pz) with probability 1 — .

Models 7 and 8 are so called central server models analyzed in [8]. All the service times are
exponentially distributed with means Scpy, Srry, Sro_1, Sto—2, Sio_s, and S;o_,, respectively.
After the completion of service at the CPU-node the task either enters one of the I0-nodes or

leaves the system (enters the TTY-node). The node is chosen according to probabilities p;o_y,

Pro—z, Pro—s, Pro—s, and prry, respectively.

Properties of the Extended P2 Algorithm

In the first phase of the experiments, we compared the first- and second-order properties of the
extended P? algorithm to those of the order statistics. We generated 101 independent sequences
of response times using each of the eight models. The sequence lengths were 65536. In each
sequence the 5t 100, 25th 50th 75th 9oth and 95" percentile were estimated with the extended
P? algorithm and the order statistics using the first 1024, 2048, 4096, 8 192, 16384, and 32 768
observations in the sequence and then using the whole sequence. The initial state was constructed
using the steady-state load distribution. In additon, a warm-up period of random length (uniform
in [1025,2048]) was used to reduce the initialization bias.

The comparison of the first-order properties is based on paired differences. We constructed
the 90% conficence intervals for the differences. These intervals indicates that usually the estimates
obtained by the extended P? algorithm are close to those given by the order statistics. Only in
ten cases (out of 8 X 7 x 7 = 392) zero does not belong to the interval. These cases are the 90*h
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percentile in Models 1, 2, 4, 5, 7, and 8; and the 95" percentile in Models 1,5, 7, and 8. The run
length was 65536 in each of these cases. The differences are not of practical importance since the
mid points of the confidence interval are less than 0.5% of the expected value of the corresponding

percentile.

In addition to the confidence intervals, we considered the mean relative differences,

oy —wil/ D w, (13)
=1 =1

where the percentile estimates based on P? algorithm are denoted by the y;’s and on the order

statistics by the z;.

Figure 3 visualizes the mean relative differences. The figure indicates that in Models 3 and 8
the relative difference in a single percentile estimate may be quite large, when the sequence is short.
But the overall conclusion is that usually there are no difference of practical significance between

the estimates based on the P? algorithm and the order statistics.

In Models 3 and 8, where the maximum relative distances are considerably greater than in
the other models, the I0-nodes are the ‘bottlenecks’ of the system. This means that the response
times are dominated by the time spent at the IO-nodes. Both the models have two types of 10—
nodes: faster and slower ones. The ratios of the service rates are 1 : 9 in Model 3 and 1 : 4.5 in
Model 8. Hence the response time distribution in Model 3 is essentially a mixture of two quite
different distributions. In Model 8 the situation is more complicated, since a task can visit the
I0-—nodes several times. The response time distribution in this case is a mixture of several different

distributions, some of which are quite different from each other.

Since the estimated percentiles were based on the same sequences, the standard test of equal
covariance matrices can not be used. Instead, we tested the hypothesis that the covariance matrix
of the P? estimates is equal to a given matrix that is the sample covariance matrix of the estimates
based on the order statistics. The test is described in [2, p. 264-267].

In four cases (out of 8 x 7 = 56) the hypothesis of equal covariance matrices was rejected
at the significance level 0.10. These cases were Model 3 run lengths being 4 096 and 16 384, and
Model 4 run lengths being 1024 and 2048. These cases were examined in details. It turned out
that in Model 4 the rejections were due to one or two outliers. In Model 3 the situation turned
out to be quite complicated. We analyzed the variances and coefficients of correlations separately.
We observed that the 90" percentile caused the rejections. When the hypothesis of the covariance

matrices being equal was tested without the 90" percentile, the hypothesis was not rejected.

The 90" percentile is problematic in Model 3. Since both the IO-nodes are the ‘bottlenecks’
of the system, the response time distribution is essentially a mixiture of two quite different distri-

butions, and the ‘mixing probability’ happens to be 0.9. In six cases the extended P? algorithm
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Figure 3: Mean Relative Differences Between Estimated Quantiles
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produced essentially greater estimates of the 90t

percentile than the order statistics. When these
sequences were examined, we observed that the initialization of the extended P? algorithm was the
key problem: The order statistic estimates of high percentiles were far away from their expecta-
tions. Since the updates of the P? estimates are stabilized by the ‘middle-markers’, the algorithm

requires a long sequence to recover from the initial error due to order statistic estimates.

Despite the significant differences in quite a few sequences, our overall conclusion is that the
second-order properties of the P? estimates are usually very close to those of the estimates based on
order statistics. Hence, the variance estimation method can be based on the asymptotic variances

of sample percentiles.

Properties of Variance Estimates

In the second phase of the experiments we analyzed the properties of the variance estimates. We
were interested in the accuracy and stability of the estimated variances. We generated 101 new
independent sequences of response times from the eight models. Using sequence lengths of 1024,
2048, 4096, 8192, 16 384, 32 768, and 65 536 we estimated the 5, 10th, 25th 50th 75t 9oth and

95th percentile together with their variances.

Since the true variances of the estimates are unknown, we compare the variance estimates
based on the proposed method to the sample variances of the independent replications. The ratios
of the means of estimated variances to the replication variances are given in Table 1. With the
exception of Models 3 and 6 the proposed variance estimation method seems to produce reasonable
estimates of variances. In Model 3 the variances of all the percentiles, but the 90" one, are seriously

underestimated.

In Model 6 the variance estimates based on our method are considerably smaller than the
replication variances, especially when the sequence becomes longer. We found that the replication
variances, with the exception of the 95" percentile, are almost equal for all the sequence lengths.
We also found that the parametric and nonparametric confidence intervals of 90% for the estimated
percentiles overlap. The parametric confidence interval is z £1.66s, where Z is the replication mean
and s? is the replication variance. The nonparametric confidence interval is (x(6), w(%)). This may

indicate that Model 6 does not satisfy the ¢-mixing condition.

The stability of the variance estimates is measured using their coefficient of variation (standard
deviation divided by mean), which are given in Table 2. With the expection of the 90t percentile
in Model 3 the coefficients of variations are not (statistically) significantly greater than those of the

corresponding y2-distributed random variables.
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Run Length

Model | Percentile 1024 2048 4096 8192 16384 32768 65536
5 1.1234  1.1113  1.1893 1.0403 1.2332 1.1947 1.0091

10 1.1708  1.0214 .8883 L9582 1.0260 .8393 9127

25 1.2134  1.0465 .9914 19392 9744 7571 L9611

1 50 L9891 9727 .8607 .8696 .9469 .8461 .9553
75 9755 1.2943  1.0295 1.1350 1.0821 .9653 L9611

90 9046 1.0024  1.0927 1.0210 1.0853 1.1897  1.0947

95 1.1165  1.2368  1.2980 1.2746  1.2865 1.2643 1.2259

5 1.4378  1.0692 1.3508  1.3449 L9618 1.0999  1.2093

10 1.2037  1.0283 1.3758 1.3449 1.1429 1.2585 1.1448

25 1.1944 1.0268 1.3167 1.3388 1.3891 1.8769 1.6949

2 50 1.2926  1.1123  1.2596  1.2776 1.5268 1.5655 1.5596
75 1.3074  1.5124 1.3496 1.3989 1.7087 1.5463 1.9879

90 1.1546  1.3790 1.5358 1.4232 1.4071 1.4268 1.5099

95 1.4390 1.3772 1.4038 1.5010 1.4845 1.4621 1.3429

5 .2440 .3409 3710 .3479 4433 .3307 3321

10 2128 3186 3134 2673 3133 .2600 .2592

25 .2206 2779 .2500 1911 1985 1817 1857

3 50 .2642 3124 .2796 .2098 .2003 .1901 1962
75 14830 5712 .5082 4196 4141 4246 4288

90 5675 6741 1.4424  2.1979  2.9101  3.0432  2.6893

95 .3706 4086 .3362 .2434 2873 .2902 .2425

5 5897 6181 7654 .6848 .6534 .5581 .5984

10 6683 7280 .6963 7151 7131 .5487 .6149

25 7868 .9021 .8628 .9260 .8522 .6280 7718

4 50 .8863 9028 1.0367 .9756 .8857 7060 .9294
75 1.1469  1.0062  1.3407 1.2437 1.1552 1.0030 1.2629

90 1.0186 7683 .9350  1.0074  1.2206 1.2253 1.2654

95 .8232  1.1676  1.2418 1.1321 1.3094 1.2370 1.3613

5 1.0005 .9288 8271 .8210 .8593 8182 1.0455

10 .9803 .8067 8110 7087 .6996 7198 7839

25 .8882 8185 7302 .6896 7526 7068 6937

5 50 .9355 .8865 7418 7195 7865 7126 7484
75 7912 7641 .6951 6913 7780 6891 6143

90 .6652 6134 .6638 6575 6251 .5467 .5453

95 7441 6392 7238 7509 4973 .5558 .5381

5 7130 .6700 .3863 .2467 1504 .0837 .0458

10 7108 .5926 .3783 .2615 1421 0777 .0430

25 7238 4533 .3469 .2345 .1200 .0653 .0336

6 50 .8988 6632 .5003 .2934 1519 .0895 .0474
75 1.0454  1.1292 1.1776 .8995 6683 .5314 4269

90 1.1628 1.0101  1.0870 9141 7288 6182 .3990

95 1.2778  1.2221 1.0849 1.0468 1.0360 1.0858 .9068

5 9757 .9863 .8467 .8761 .9827  1.1406 .9229

10 .8473 .9936 8171 .8781 .8307 .9410 .8923

25 7899 .9853  1.0138 1.0858 19997 9718 .8641

7 50 .8751  1.0812 L9577 .9023 .9340 .8641 L9682
75 7495 .9854 .9255 .8956 .9263 L9314 .9859

90 7731 19627 L7527 .8954 .8356 .9303 .8547

95 1.0030 1.1180 7957 L9192 .9060 .8608 .8547

5 .9588  1.1183 9903 1.3472  1.2592  1.1689  1.1777

10 1.6802 1.5881 1.3739 1.3823 1.3327 1.7713 1.5069

25 .5884 7594 .6898 .5860 5872 5671 .7460

8 50 7576 8052 1.0862 1.1494 1.1219 L9505 1.1212
75 .8491 6907 19374 1.0406 .8658 7835 L9142

90 1.0050 .8195 .9651  1.0047 .8956 8129 9379

95 1.0253 7329 1.0480 .9634 8771 L7963 1.0006

Table 1: Ratios of the Means of Estimated Variances to Replication Variances
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Run Length

Model | Percentile 1024 2048 4096 8192 16384 32768 65536
5 22523 14964 11150  .07593  .05746  .04037  .02805

10 20155 15219 11236 .07904 .05620 .04108 .02514

25 18503 012985 09535  .07134  .04928 .03055  .02054

1 50 7892 11272 07697 05192 .03744  .02659  .01940
75 18579 11732 .07450 06534 .04426  .03031  .02200

90 24394 17601 12537 .08663 .06039 .04145 .02710

95 30470 24716 16509  .14991  .09970 .06971  .05239

5 23291 15157 11079 07971  .05883  .04453  .03009

10 .25086  .17352 11039 .07919 .05794 .04082 .02613

25 19556 012625 .08355  .05988  .04554 .03334 .02290

2 50 16588 12012 .07903  .05477  .03868 .03062  .02256
75 19347 14437 .09571 07163  .04815 .03660  .02545

90 30127 .22011 16047 11037 .07891  .05998  .04132

95 42794 36744 28097 17938 11130  .09884  .05811

5 44590  .32261  .25081 .18580 .13988 .10110 .07663

10 36939 26512 19567 15243  .11080 .08143  .05503

25 23388 17549 12621 .10184 .07090 .05032 .03618

3 50 20170 13779 09544 .06449  .04466 .03493  .02444
75 .31958 21014 13574 .10302  .07200 .05150 .03843

90 62161 53909 47661 37199  .26679  .19371 .15663

95 37988 27400  .23166 17276  .10661 .08123  .06754

5 41448 31398 25871 19865  .15665 .09406 .06662

10 30186 .23184 17198 12625  .09370 .06108  .04371

25 19473 14104 09873 07777 .05168  .03672  .02839

4 50 17301 12328 09298 06180  .04285 .03012  .02313
75 22034 15742 11461  .07799  .05732 .03757  .02422

90 26959 20579 17424 11019  .09009 .06225  .04455

95 52749 35657 27560  .21668  .18910 .12710  .08129

5 26735 .22292 16103 .12138  .08642 .06356  .04773

10 25411 17916 11898  .09455 .06234 .04380 .03194

25 19746 14713 .10065  .07035  .04730 .03571  .02840

5 50 16458 11047 .07377  .05436  .03559 .02919 .02168
75 18256 12447 08646 .06339  .04727 .03745 .02304

90 .25608  .20776 14428 .09368 .08009 .05350 .03798

95 36925 30281  .25616  .16728  .14894 .11710 .08681

5 21136 14127 11979 08974  .07958 .07030  .06519

10 22779 .16963 11267 08050  .07132 .06115 .05049

25 18506 13648  .08721  .07126  .05465 .04839  .04179

6 50 16574 11795 07703 .05938  .04739 .03825 .03141
75 18481 14118 10185  .06986  .04858  .03878  .03170

90 24199 18308 13854 .10946  .09680 .08328  .08402

95 233158 26601  .21398 15079  .10826 .07613  .06431

5 31203 20342 14370 .10219  .08192 .05570  .04030

10 22352 18284 14682  .09439 .06752 .04579  .03294

25 20505  .13197  .09261  .05975 .04651 .03372 .02451

7 50 19644 12647 .08641  .05757  .04306  .02870  .02206
75 8720 13168 10286 06967  .05108  .03171  .02594

90 28771 20289 14638 09748  .06127  .04623  .03243

95 30203 28387  .22734 14264 .11089 .08100 .05883

5 21411 14780  .10582  .07967  .05488 .03955  .02826

10 23757 .16868 12014  .09932 .07155 .04410 .02781

25 21864  .13847  .09357 .06981 .05253 .03763  .02440

8 50 18321 11947 07574 05530  .03994 .02790 .01834
75 21187 13526 .09082  .06607  .05364 .03787  .02251

90 23899 17541 11866  .08097  .06280 .04345 .03063

95 27802 21413 16290  .13363  .10245 .06382  .04723

Table 2: Coefficients of Variation to Estimated Variances
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Model 1 2 3 4 5 6 7 8
Run Length
Mean 1125 1642 13079 1744 8070 2879 6367 3447
St. deviat. 306 560 6513 586 695 1005 2035 952
Coverage .94 .95 .87 .99 .90 91 .96 .94
Fraction of outliers
in all dimensions 0 0 0 0 .02 0 0 0
in two dimensions .01 0 .02 0 .04 .01 0 0
in one dimension .05 .05 A1 .01 .04 .08 .04 .06

Table 3: Summary of Sequential Estimation Runs

Sequential Estimation of Several Percentiles

In the last phase of the experiments we estimated the 50", 75t and 90" percentile of the response
time from the eight models using the proposed sequential estimation procedure. The accuracy
requirement was ¢ = 0.1 for each percentile and a = 0.1. A heuristic interpretation of the used
requirement is that the relative errors of all the estimates are less than 10 % with a probability not

less than 0.90. The minimum run length was 1024.

With each of the eight models we carried out 101 independent replications. Since the true
values of percentiles are unknown, we used the means of the order statistic estimates (phase one of

the experiments) as the ‘exact’ values.

A summary of these sequential simulation runs is given in Table 3. The table contains the
means and standard deviations of the run lengths, coverages, and fractions of outliers. With the

exception of Model 3, the run lengths are quite short and stable.

The coverage is the fraction of runs, where all the estimates are accurate enough, i.e. |6; —éj| <
5|éj| for all 7, where the éj’s are the estimated percentiles and the 6;’s are their ‘exact’ values.
Only in Model 3 the observed coverage is less than 0.9, 1i.e. 1 —a. However, if we repeat a Bernoulli
trial, where the probability of success is 0.9, 101 times, 88 is not a statistically exceptional result.

In fact, the 95% confidence interval for the number of successes is [85,97].

The fractions of outliers are classified into three cathegories. They correspond to the number
of dimensions, in which the estimates do not satisfy the given accuracy requirement. Only in Model

5 there are estimates, which are outliers in all of the three dimensions.

Figures 4a and 4b give a visualization of the obtained percentile estimates. The three-
dimensional estimates are projected on the faces of a cube. On each of the three visible faces

a two-dimensional (marginal) scatter-plot is pasted. (For details, see [23].) The plotareas are
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Figure 4a: Estimated Prercentiles
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Figure 4b: Estimated Prercentiles
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§; + 20%. Estimates, which are out of the plotarea, are shown as bullets (o) on the frames. The
parallelograms on the faces correspond to 8; £ 10%. With the exception of Model 3, there are no
serious departures from the ‘exact’ values of percentiles. In Model 3, the estimated medians exceed

their expectation by more than 20% in three cases.

4. Conclusions

The overall conslusion from these experiments is that the proposed sequential estimation procedure
provides the percentile estimates within the required accuracy. We have reported various difficulties
in one of the eight models. We have not tried to use any other method to analyze that system.
However, our intuitive belief is that the model would be difficult also to other methods, since its

response time distribution is essentially a mixture of two quite different distributions.
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I Asymptotic Properties of Order Statistic

The following result is given in [22].

Let {X;}2___ be a stationary sequence of random variables defined on a probability space

(2, A, P). Let M? _ and M3, be the o-fields generated by {Xi}j:_oo
Suppose that Fy € ./\/lj_oo, Eye M5, Tfforall j (—oo < j<oo)andn>1

and {X;}72., , respectively.

| P(Es|Er) = P(E2) | < ¢(n),
126(1) > ¢(2) > ..., lim ¢(n)=0,and

o0

[p(n)]'/? < o0,

n

then the sequence {X;} satisfies the ¢-mixing condition.

Let F'(z) be the (marginal) distribution function of X;. Let #, be the sample p-quantile (100p*®
percentiles); &, = X(fnp))- Under the following conditions ) (0 < p < 1) has asymptotic normal
distribution:

1. F(z) is absolutely continuous in some neighbourhood of z,,

2. the density function f(z) is continuous , positive, and finite in some neighbourhood of z,,

and
3. {X,} satisfies the ¢-mixing condition.

Futhermore, &, is asymptotically unbiased, and lim{nVar(2,)} = h,(0)/f(z,)* as n — oo, where

hy(w) is the spectral density of binary sequence {/;(z,)} at frequency w:

I(x) 1 it X; <z,
() =
! 0 ,if X;>a.
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ITI Estimating Spectral Densities

Most of the methods for estimating spectral densities h(w) are based on the periodogram. The
periodogram, {I(n/N)}, of sequence {Z]‘}é\;l is defined by

N-1
1 -
I(n/N):ﬁ E zj41 exp(—i2mjn/N)
J=0

The periodogram can be efficiently computed using the fast Fourier transform, especially when N
is a power of two. Under very general conditions (see e.g. [16]) the periodogram ordinates have the

following approximate properties:

E[I(n/N)] =~ h(n/N) 0<n<N/2,
Var[I(n/N)] = h(n/N)* 0<n< N/2,
Cov[I(n/N,m/N)] ~ 0 0<n#m<N/2.

Asymptotically periodogram ordinates are distributed as multiples of independent y? random
variables with two degrees of freedom. Hence the variances of periodogram ordinates do not decrease
as NNV increases. There are two main approaches to reduce the variance of spectral density estimates.
The first one is based on local, usually weighted averaging, and the second one on averaging over

time segments.

In averaging over time segments, the sequence is divided into non-overlapping subsequences,
each of length Ny. Let z; 5, j=1,..., Ny
., k=1,..., K denote the j + (k — 1)thh observation in the original sequence. In each segment

periodograms are evaluated:
2
Ny—1

1 .
I(n/Ny) = N Z Zjy1,k exp(—127jn/Np)

i=0

The spectral density estimates are then

h(n/Ny) =

ka n/Ny), 0<n<Ny/2.

In [24] it is shown that the variances are reduced by the factor K in practical situations. The
spectral density estimates at different frequencies remain approximately uncorrelated. Hence if we
average 2M + 1 adjacent spectral density estimates 2((n — M)/Ny), ..., h((n+ M)/Ny), we obtain
variance reduction by factor K(2M +1). If only the non-overlapped averages are used, the estimates

are still approximately uncorrelated.
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Since the order of averagings does not chage the estimates, we can first evaluate the averaged

spectral estimates in each segment

M
A 1
hk(wj)=72M+1 _2_: Ip(wj + m/Ns),
i(2M +1)— M
wjzj( }) Li=1,..n< NyJ(AM + 2)
b

and then the averages of segments
R 1 K
h(w;) = & > hilw))
k=1

A common practice, established in [4], is to consider ﬂ(wj)/h(wj) as a multiple of a y? variable.

The degrees of freedom is taken as 2E2{h(w;)}/Var{h(w;)}, which in our case is 2K (2M + 1).

IIT Derivation of Approximately Unbiased Regression Estimates

We base our estimate of 2(0) on the regression model y = Xa + €, where
1 W w12
g =loglh(w)} +pm,  X=| 1 1 1|,
1w, wy?
and the ¢’s are independently and identically distributed: E(e¢) =0, and E(ek) = pg, k> 1.
When l:z(wj)/h(wj) is considered as a multiple of a y? random variable with d degrees of
freedom, the first four p’s are then (see [3]):
H1 = 1/d+ 1/(3d2) ’
o~ 2f(d-1),
ps =~ —4/(d—1)*, and
8/(d—1)>+12/(d—1).

4

Ha

The least square estimate of « is given by & = Cy = a + Ce, where C = (X’X)~!X’. Hence
E{(ao — ao)'} = mr X erj* = g,

Our parameter of interest is exp(ap), whose natural estimate is exp(dp). In general g(T) is a
biased estimate of g(7"), but the bias can be reduced (see e.g. [6, p. 260]). Using Taylor expansion
exp(dyp) can be written as

Ay ¢ (do - Oéo)k
exp(dp) = exp(ao) E i
k=0
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Hence an approximately unbiased estimate of h(0) is obtained as

h(0) = exp(do)/(1+ /2 + s /6 + py/24).
When a confidence interval is constructed using normal approximation, the degrees of freedom in
the variance estimate is needed. A commonly used method is to consider 4(0)/A(0) as a multiple
of a \? variate. The degrees of freedom is then taken as 2E{y2}?/Var(x?). Since A(0)/h(0) =
(3 (G0 — ao)t/EN /(1 + phy/2 + 11y /6 + 11y /24), the degrees of freedom is about 3/(3ub + 2us + pfy).



