
Sequential Procedure for SimultaneousEstimation of Several PercentilesKimmo E. E. RaatikainenUniversity of Helsinki, Department of Computer ScienceTeollisuuskatu 23, SF-00510 Helsinki, Finlande-mail: Kimmo.Raatikainen@Helsinki.FITelefax: + 358 0 7084441AbstractPercentiles are convenient indices to characterize the entire range of the values of simulation outputs.However, they have only seldom been used in simulation studies. One of the reason has been the lackof sequential estimation procedures, which are needed to obtain estimates of prede�ned accuracy.In this paper we introduce a sequential procedure for estimating several percentiles simultaneously.The procedure uses the extended P2 algorithm to estimate the percentiles. The variances of thepercentile-estimates are estimated using a spectral method. Since the method applies a Bonferroniinequality, the covariances between the percentile-estimates are not needed. The procedure is shownto produce estimates having the prede�ned accuracy in eight queueing network models, representingmultiprogrammed and time-shared computer systems.Key words: Percentile Estimation, Variance Estimation, Run Length Control1. IntroductionIn most simulation studies the mean values of output data have been analyzed. However, in manysituations the means provide an insu�cent or even a misleading characterization of the outputdata. On the contrary, a suitably selected set of percentiles re
ects all the essential distributionalfeatures of the phenomenon analyzed by simulation. Percentiles have only seldom been used in�Manuscript of paper published in Transactions of the Society for Computer Simulation 7,1 (March 1990): 21{44



2 Kimmo E. E. Raatikainen:simulation studies. We believe that the reason is the complexity of percentile estimation. Thecalculation of estimates has been regarded as a too cumbersome task in discrete event simulation.The accuracy estimation is not a simple task since the output sequence is, in general, autocorrelated.Therefore, sophisticated approaches are necessary to obtain an estimate of the accuracy. Only afew papers have been published about the estimation of percentiles in simulation context. Methodsof estimating a single percentile and its variance have been introduced in [9, 15, 20, 21, 7]. Allthese methods are based on a �xed, prede�ned length of output sequence.One of the basic problems in sequential estimation of percentiles is that the whole outputsequence must be stored and (at least partially) sorted if the estimates are based on the orderstatistics. The P2 algorithm [10] solves the problem if a single percentile is to be estimated.The algorithm estimates single percentiles without storing and sorting the observations. In [17]we introduced the extended P2 algorithm that estimates several percentiles simultaneously. Theextension is important since a single percentile estimate is su�cient only in a few speci�c situations.The use of sequential estimation procedures where the length of a simulation run is not pre-de�ned is of practical importance. Estimates produced by a simulation usually have an accuracyrequirement determined by the application. The analyst wants to obtain estimates, which meethis or her accuracy requirement. Running the simulation less than it is necessary to satisfy theaccuracy requirement would not provide the information needed. On the other hand, longer runswould be a waste of computing time; see also the conclusions in [14].In one-dimensional situations the accuracy requirement is usually given as the maximum rel-ative half-width of the con�dence interval. In [18] we proposed a sequential procedure for simul-taneous estimation of several percentiles. There we generalized the relative half-width criterion tomultidimensional situations using a relative Eucledian distance. In this paper we will introduceanother sequential procedure based on another accuracy requirement.When a one-dimensional estimate �̂ satis�es the given maximum relative half-width criterionof the con�dence interval ("; �), we have a con�dence of at least 1�� that the true, unknown value� lies in the interval [ (1�")�̂ ; (1+")�̂ ]. In many situations the components of a multidimensionalestimate, �̂ = (�̂1; : : : ; �̂m)0, are of interest both as single independent values and as a vector. Insuch a situation it is natural to require that all the components of the vector satisfy simultaneouslya relative half-width criterion.In this study we apply the following accuracy requirement: The estimate �̂ is accuracte enough,if we have a con�dence of at least 1� � that the components of the true unknown vector � are inthe intervals [(1� "1)�̂1; (1+ "1)�̂1]; : : : ; [(1� "m)�̂m; (1 + "m)�̂m] or, in other wordsPrfj�1 � �̂1j � "1j�̂1j; : : : ; j�m � �̂mj � "mj�̂mjg � 1� � .Hence, the accuracy requirement is speci�ed by ("1; : : : ; "m; �).



Sequential Procedure for Simultaneous Estimation of Several Percentiles 3The current procedure has three important advantages over that given in [18], which was tobest of our knowledge the �rst sequential procedure for simultaneous estimation of several per-centiles. First, only variances of the percentile estimates, not the covariances between them, needto be estimated. This is due to the applied accuracy requirement allowing the use of a Bonferroniinequality. Secondly, the sequence length need not be double between successive tests of termi-nation condition, since we use segmentation in the variance estimation. The third advantage isin the assumptions about the stochastic properties of the output sequence. The procedure givenin [18] assumed that the percentile estimates have a multinormal limiting distribution. The cur-rent procedure assumes only that each marginal distribution is asymptotically normal. Hence theusual �-mixing condition, not a stronger one, should be satis�ed. The method of estimating thepercentiles, and their variances and evaluating the accuracy measure are described in the followingsection.The simulation experiments are reported in the last section. We analyzed the response timesequences from simulations of eight di�erent queueing network models. The analyzed models arenetworks of 2{6 servers that represent multiprogrammed and time-shared computer systems. Theexperiments were performed in three phases. The �rst two of them were initial veri�cations of theextended P2 algorithm and the method of estimating the variances. In the last phases we appliedthe proposed sequential procedure to estimate the 50th, 75th, and 90th percentile of the responsetimes from each of the eight models.2. Description of the MethodWe apply the extended P2 algorithm to estimate several percentiles simultaneously. In this sectionwe describe how the variances of percentile estimates can be estimated. In addition, we give anaccuracy requirement for multidimensional estimates, such as a set of percentiles. Finally we showhow a mechanism to control the run length of simulation can be established using the estimatedvariances and a Bonferroni inequality. Before these topics we give a short description of the extendedP2 algorithm. The detailed algorithm is given in [17].Estimating Percentiles with the Extended P2 AlgorithmA straightforward method of estimating percentiles is based on sorting (at least partially) theobservations. Suppose that a sequence of N observations fXjgN1 is available. Let X(j) denotethe jth observation in the ordered sequence; X(1) � X(2) � � � � � X(N). In other words, X(j) isthe jth order statistic. Based on the order statistics the estimate of the 100pth percentile, xp, isX([1+(N�1)p]), where [�] denotes rounding to the nearest integer.
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ni�1 ni ni+1actual positionmarker i-1 marker iupdatedmarker i� marker i+1

heightqi+1qiqi�1 desiredposition ofmarker i linear adjust-ment necessaryif ni + 1 and diin this interval
Figure 1: Example of Marker UpdateSince di � ni � 1, ni is decreased by 1 and new qi is evaluated.Instead of storing and sorting the observations, the extended P2 algorithm approximates theinverse of the empirical cumulative distribution function by a piecewise-parabola. The approxima-tion is done by maintaining the `marker information'. Each marker has a height, an actual position,and a desired position. Each marker is associated with the estimation of a speci�c percentile.Suppose that a marker is used to estimate the 100pth percentile of the sequence fXjgN1 . Nowthe desired position of the marker is 1 + (N � 1)p. The algorithm tries to keep the actual positionof the marker, n, close to [1+ (N � 1)p]. The height approximates the value of X(n) and is thus anestimate of xp.Suppose that percentiles xp1 ; : : : ; xpm are to be estimated. The algorithm maintains m+2 prin-cipal markers and m+1 middle markers. The principal markers are used to estimate the minimum,the required percentiles, and the maximum. Each middle marker estimates the percentile at thepoint midway between two adjacent principal markers. The objective of the middle markers is tostabilize the updates of the marker information.The markers are updated, if necessary, after each observation. After N observations, theactual and desired positions of the markers at the minumum and at the maximum are 1 andN , respectively. Their heights are the minimum and the maximum values in the sequence. The



Sequential Procedure for Simultaneous Estimation of Several Percentiles 5updating of the actual and desired positions of the other markers is simple. The actual position ofeach marker the height of which is greater than the observation is increased by one. If the actualposition is now o� to the left or to the right of its desired position by more than one position, thenthe height and the actual position are adjusted. The adjustment of the marker height is done usingeither a piecewise-parabolic or a piecewise-linear formula. The parabolic formula is preferable butsometimes the linear formula must be used in order to keep the marker heights in a nondecreasingorder. Figure 1 demonstrates the updating.The parabolic formula assumes that the curve passing through any three adjacent markersis of the form qi = an2i + bni + c, where qi is the height and ni is the actual position of theith marker. The movement of the actual position of a marker is always only one position. Theparabolic adjustments areqi  qi + dni+1 � ni�1�(ni � ni�1 + d) qi+1 � qini+1 � ni (1)+(ni+1 � ni � d) qi � qi�1ni � ni�1� ,ni  ni + d ,where d = 1, if the movement is to the right, and d = �1, if the movement is to the left.The linear adjustments are qi  qi + d qi+d � qini+d � ni , (2)ni  ni + d .Although the extended P2 algorithm proceeds only one observation at a time, we collect theobservations in segments, each of length Nb. The �rst segment is used to initialize the algorithm.The initialization is based on the order statistics. The actual positions are initialized to ni = [di],where di is the desired position of the ith marker, i = 1; : : : ; 2m+ 3. Then it is checked that theactual positions are strictly increasing. If not, some adjustments must be made. The heights arethen initialized to qi = x(ni).Estimating the Variance of Percentile EstimatesAlthough our percentile estimates are not based on the order statistics, we use the asymptoticproperties of the order statistics in estimating the variances of the percentile estimates. Theempirical results given in [17] and this paper indicate that the behaviour of the percentile estimatesbased on the extended P2 algorithm and the order statistics is usually very similar.



6 Kimmo E. E. Raatikainen:When the output sequence fXjgN1 is stationary and satis�es the �-mixing condition, the per-centile estimate x̂p, based on the order statistic, has a normal limiting distribution (see AppendixI). Hence, as N becomes large, the variance of x̂p can be approximated byVar(x̂p) � ĥp(0).�Nf̂(x̂p)2� ; (3)where f̂ (x̂p) is the estimated (marginal) density of theXj 's at xp and ĥp(!) is the estimated spectraldensity of the binary process fIj(xp)g at frequency !:Ij(xp) = ( 1 , if Xj � xp ,0 , if Xj > xp : (4)The extended P2 algorithm approximates the inverse of the empirical cumulative distributionfunction by a piecewise-parabola, F̂�1(y) = ay2 + by + c, in the neighbourhood of p. Hence thedensity function can be approximated by f̂(x) = (b+ 2aF̂ (x))�1 in the neighbourhood of xp.The spectral density of the binary process fIj(xp)g has a central role, when the variance of x̂pis estimated. The generation of this process requires that the whole sequence fXjg is available. Theproblem of storing the whole sequence is avoided, when fIj(xp)g is approximated by the processfÎj;k(x̂p)g: Îj;k(x̂p) = ( 1 , if Xj;k � x̂p;k0 , otherwise ; j = 1; : : : ; Nb ; k = 1; : : : ; K ; (5)where Xj;k is the jth item in the kth segment (the j + (k � 1)Nbth observation), and x̂p;k is theestimate of xp based on k segments (kNb observations).In each segment we evaluate the spectral density estimates, ĥk(!j), for j = 1; : : : ; n <Nb=(4M + 2) by averaging 2M + 1 adjacent periodogram values of the sequence fÎj;k(x̂p)gNbj=1.The overall spectral density estimates are taken as^̂hp(!j) = 1K KXk=1 ĥk(!j) ; (6)where K is the number of segments. For details, see Appendix II.A convenient method to estimate the spectral density at frequency 0 has been developed in[8]. A low order polynomial is �tted to the logarithms of the smoothed periodogram values. Weapply a similar regression approach to construct an approximately unbiased estimate of hp(0) (seeAppendix III.



Sequential Procedure for Simultaneous Estimation of Several Percentiles 7Accuracy Requirement for Multidimensional IndexFor a one-dimensional index �, such as the mean or a single percentile point, the accuracy require-ment is usually given as the upper bound of the relative half-width " for the con�dence interval oflevel 1 � �. Using this requirement and asymptotic normality of the estimate �̂ the simulation iscontinued until ŝ=�̂ � "=td(1� �=2) ; (7)where ŝ2 is the estimated variance of �̂ with d degrees of freedom, and td(1��=2) is the 100(1��=2)thpercentile point of Student's t-distribution with d degrees of freedom.This requirement can be interpreted as Prfj� � �̂j � "j�̂jg � 1� �. In other words, we have acon�dence of at least 1� � to trust that the true value � is in the interval [(1� ")�̂; (1 + ")�̂]. Anatural extension to multidimensional situations, where the index of interest is � = (�1; : : : ; �m)0,is to require that we have a con�dence of at least 1� � to trust that each of the components is inthe interval [(1� "j)�̂j ; (1 + "j)�̂j ], i.e.Prfj�j � �̂j j � "j j�̂j j ; j = 1; : : : ; mg � 1� � : (8)Using a Bonferroni inequality (see e.g. [11, p. 41]) it can be concluded that the requirement (8) issatis�ed, if Prfj�j � �̂j j � "j j�̂j jg � 1� �j and mXj=1 �j � � : (9)Suppose that the estimates are �̂j and their estimated variances ŝ2j , each with dj degreesof freedom. Using the con�dence intervals based on normal approximations, Prfj�j � �̂j j �ŝj tdj (1��j=2)g = 1� �j , the probabilities that j�j � �̂j j � "j j�̂j j can be solved:�j = 2Fdj (�"j j�̂j j=ŝj) ; (10)where Fd(t) is the cumulative distribution function of the Student t-distribution with d degreesof freedom. Hence the criterion to terminate the simulation is P�j � �. If the criterion is notsatis�ed, additional segments of observations must be generated in order to obtain estimates ofacceptable accuracy.It is not necessary to evaluate the termination criterion after each segment. Since the ŝj 's areproportional to 1=pKNb, we can obtain a rough prediction for the number of segments, K 0, whichis required to satisfy the termination criterion:K 0 = KqX�j=� ; (11)



8 Kimmo E. E. Raatikainen:where K is the current number of segments, and the �j 's are based on current estimates, �̂j ; ŝ2j ; dj.Since K 0 is only a rough prediction, we actually perform the next termination test after K 00 seg-ments, where K 00 = minf2K;maxfK + 2; K 0gg : (12)Implementation DetailsThe method described above has several internal and external parameters. The external parameters,the "j 's and � are used to control the accuracy of the estimates. The problem of choosing suitablevalues is application dependent. However, our experience is that values greater than 0.15 will notprovide stable estimates, since the variance estimates are based on asymptotic properties.The internal parameters are Nb, M , and n, i.e. the length of the segments, the degree of `local'averaging, and the number of frequencies in the regression. The �rst two of them a�ect the varianceand the bias of the spectral estimates. Our experience is that Nb = 512 or 1024 is a reasonabechoice. The degree of `local' averaging should be low, say M = 0 or 1=2. Higher values of M willproduce seriously biased estimates, if Nb is not increased. With M = 1=2 we have found that nshould be 21{35. If M = 0, n should be somewhat greater, about 35{50. In the experiments, weused the following values: Nb = 512, M = 1=2, and n = 31.3. Experimental ResultsIn the simulation experiments we analyzed three di�erent questions. Our primary interest is thesequential estimation of several percentiles simultaneously. However, before we studied the runlength control mechanism, we wanted to be sure that the extended P2 algorithm and the varianceestimation method do not introduce serious errors. Hence, we �rst analyzed the behaviour ofthe extended P2 algorithm. The objective was to �nd out, whether the estimates based on theproposed algorithm have similar �rst- and second-order characteristics as the order statistics. Inthe second phase we studied the properties of the variance estimation method. Finally we analyzedthe mechanism to control the length of simulation runs.Analyzed ModelsSince our primary interest is in modelling computer systems, we selected models, which representthem. In all the experiments we analyzed percentiles of the response times from eight di�erentmodels. The models are used in many simulation studies, for example in [12, 13, 19, 8]. Figure 2contains a summary of the models.Models 1{4 are the so called Buzen models [5]. They represent a multiprogrammed computersystem, where the number of active tasks is constant (N). All the service times are exponentially



Sequential Procedure for Simultaneous Estimation of Several Percentiles 9Models 1{4> IO-1> CPU > IO-2 Model 1 2 3 4N 4 8 8 8SCPU 1 1 1 1SIO�1 2 2 2.22 0.56SIO�2 2 2 20 5pIO�1 0.5 0.5 0.9 0.9pIO�2 0.5 0.5 0.1 0.1Model 5: Population 35TTY <un�nished jobs_ > CPU Node Type Serv. RateTTY IS 0.04CPU RR* 1.25* quantum .1; overhead .015Model 6: Population 40TTY <> CPU > IO Node Type Serv. Distr.TTY IS Exp(1/30)CPU PS H2(0:3; 0:8; 12:5)IO IS Exp(2)Models 7 and 8TTY < > IO-1> IO-2^ > CPU > IO-3> IO-4
Model 7 8Population 25 25STTY 100 100SCPU 1 1SIO�1 = SIO�2 1.39 5.56SIO�3 = SIO�4 12.5 25pTTY 0.2 0.2pIO�1 = pIO�2 0.36 0.36pIO�3 = pIO�4 0.04 0.04Figure 2: Analyzed Models



10 Kimmo E. E. Raatikainen:distributed with means SCPU , SIO�1, and SIO�2. After completion of service at the CPU{node thetask enters either of the IO{nodes. The IO{node is selected according to probabilities pIO�1 andpIO�2. When a task leaves an IO{node, a new task simultaneously enters the CPU{node.Models 5{8 represent time-sharing computer systems. The collection of user terminals ismodelled as an in�nite server (TTY{node), where the waiting time for the service is always zero.Its service time represents the `thinking-time' between a task completion and the activation of thenext one.In Model 5 all the service times are exponentially distributed. The scheduling policy in theCPU{node is round robin: Each job receives service in quantums of �xed size. If the service isnot completed in a quantum, the job is removed into the end of the waiting queue. This model istreated analytically in [1]. A detailed simulation study is given in [19].Model 6 is a variation of the `standard' queueing network, where service times have highvariability, see e.g. [25]. In the CPU{node service times are hyperexponentially distributed. Ahyperexponential distribution, H2(�; �1; �2), is a special case of the general Coxian distribution.The service time is a mixture of two exponential distributions: Exp(�1) with probability �, andExp(�2) with probability 1� �.Models 7 and 8 are so called central server models analyzed in [8]. All the service times areexponentially distributed with means SCPU , STTY , SIO�1, SIO�2, SIO�3, and SIO�4, respectively.After the completion of service at the CPU{node the task either enters one of the IO{nodes orleaves the system (enters the TTY{node). The node is chosen according to probabilities pIO�1,pIO�2, pIO�3, pIO�4, and pTTY , respectively.Properties of the Extended P2 AlgorithmIn the �rst phase of the experiments, we compared the �rst- and second-order properties of theextended P2 algorithm to those of the order statistics. We generated 101 independent sequencesof response times using each of the eight models. The sequence lengths were 65 536. In eachsequence the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentile were estimated with the extendedP2 algorithm and the order statistics using the �rst 1 024, 2 048, 4 096, 8 192, 16 384, and 32 768observations in the sequence and then using the whole sequence. The initial state was constructedusing the steady-state load distribution. In additon, a warm-up period of random length (uniformin [1 025; 2 048]) was used to reduce the initialization bias.The comparison of the �rst-order properties is based on paired di�erences. We constructedthe 90% con�cence intervals for the di�erences. These intervals indicates that usually the estimatesobtained by the extended P2 algorithm are close to those given by the order statistics. Only inten cases (out of 8 � 7 � 7 = 392) zero does not belong to the interval. These cases are the 90th



Sequential Procedure for Simultaneous Estimation of Several Percentiles 11percentile in Models 1, 2, 4, 5, 7, and 8; and the 95th percentile in Models 1,5, 7, and 8. The runlength was 65 536 in each of these cases. The di�erences are not of practical importance since themid points of the con�dence interval are less than 0.5% of the expected value of the correspondingpercentile.In addition to the con�dence intervals, we considered the mean relative di�erences,nXi=1 jyi � xij= nXi=1 xi ; (13)where the percentile estimates based on P2 algorithm are denoted by the yi's and on the orderstatistics by the xi.Figure 3 visualizes the mean relative di�erences. The �gure indicates that in Models 3 and 8the relative di�erence in a single percentile estimate may be quite large, when the sequence is short.But the overall conclusion is that usually there are no di�erence of practical signi�cance betweenthe estimates based on the P2 algorithm and the order statistics.In Models 3 and 8, where the maximum relative distances are considerably greater than inthe other models, the IO{nodes are the `bottlenecks' of the system. This means that the responsetimes are dominated by the time spent at the IO{nodes. Both the models have two types of IO{nodes: faster and slower ones. The ratios of the service rates are 1 : 9 in Model 3 and 1 : 4:5 inModel 8. Hence the response time distribution in Model 3 is essentially a mixture of two quitedi�erent distributions. In Model 8 the situation is more complicated, since a task can visit theIO{nodes several times. The response time distribution in this case is a mixture of several di�erentdistributions, some of which are quite di�erent from each other.Since the estimated percentiles were based on the same sequences, the standard test of equalcovariance matrices can not be used. Instead, we tested the hypothesis that the covariance matrixof the P2 estimates is equal to a given matrix that is the sample covariance matrix of the estimatesbased on the order statistics. The test is described in [2, p. 264{267].In four cases (out of 8 � 7 = 56) the hypothesis of equal covariance matrices was rejectedat the signi�cance level 0.10. These cases were Model 3 run lengths being 4 096 and 16 384, andModel 4 run lengths being 1 024 and 2 048. These cases were examined in details. It turned outthat in Model 4 the rejections were due to one or two outliers. In Model 3 the situation turnedout to be quite complicated. We analyzed the variances and coe�cients of correlations separately.We observed that the 90th percentile caused the rejections. When the hypothesis of the covariancematrices being equal was tested without the 90th percentile, the hypothesis was not rejected.The 90th percentile is problematic in Model 3. Since both the IO{nodes are the `bottlenecks'of the system, the response time distribution is essentially a mixiture of two quite di�erent distri-butions, and the `mixing probability' happens to be 0.9. In six cases the extended P2 algorithm
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Figure 3: Mean Relative Di�erences Between Estimated Quantiles



Sequential Procedure for Simultaneous Estimation of Several Percentiles 13produced essentially greater estimates of the 90th percentile than the order statistics. When thesesequences were examined, we observed that the initialization of the extended P2 algorithm was thekey problem: The order statistic estimates of high percentiles were far away from their expecta-tions. Since the updates of the P2 estimates are stabilized by the `middle-markers', the algorithmrequires a long sequence to recover from the initial error due to order statistic estimates.Despite the signi�cant di�erences in quite a few sequences, our overall conclusion is that thesecond-order properties of the P2 estimates are usually very close to those of the estimates based onorder statistics. Hence, the variance estimation method can be based on the asymptotic variancesof sample percentiles.Properties of Variance EstimatesIn the second phase of the experiments we analyzed the properties of the variance estimates. Wewere interested in the accuracy and stability of the estimated variances. We generated 101 newindependent sequences of response times from the eight models. Using sequence lengths of 1 024,2 048, 4 096, 8 192, 16 384, 32 768, and 65 536 we estimated the 5th, 10th, 25th, 50th, 75th, 90th, and95th percentile together with their variances.Since the true variances of the estimates are unknown, we compare the variance estimatesbased on the proposed method to the sample variances of the independent replications. The ratiosof the means of estimated variances to the replication variances are given in Table 1. With theexception of Models 3 and 6 the proposed variance estimation method seems to produce reasonableestimates of variances. In Model 3 the variances of all the percentiles, but the 90th one, are seriouslyunderestimated.In Model 6 the variance estimates based on our method are considerably smaller than thereplication variances, especially when the sequence becomes longer. We found that the replicationvariances, with the exception of the 95th percentile, are almost equal for all the sequence lengths.We also found that the parametric and nonparametric con�dence intervals of 90% for the estimatedpercentiles overlap. The parametric con�dence interval is �x�1:66s, where �x is the replication meanand s2 is the replication variance. The nonparametric con�dence interval is (x(6); x(96)). This mayindicate that Model 6 does not satisfy the �-mixing condition.The stability of the variance estimates is measured using their coe�cient of variation (standarddeviation divided by mean), which are given in Table 2. With the expection of the 90th percentilein Model 3 the coe�cients of variations are not (statistically) signi�cantly greater than those of thecorresponding �2-distributed random variables.



14 Kimmo E. E. Raatikainen:Run LengthModel Percentile 1024 2048 4096 8192 16384 32768 655365 1.1234 1.1113 1.1893 1.0403 1.2332 1.1947 1.009110 1.1708 1.0214 .8883 .9582 1.0260 .8393 .912725 1.2134 1.0465 .9914 .9392 .9744 .7571 .96111 50 .9891 .9727 .8607 .8696 .9469 .8461 .955375 .9755 1.2943 1.0295 1.1350 1.0821 .9653 .961190 .9046 1.0024 1.0927 1.0210 1.0853 1.1897 1.094795 1.1165 1.2368 1.2980 1.2746 1.2865 1.2643 1.22595 1.4378 1.0692 1.3508 1.3449 .9618 1.0999 1.209310 1.2037 1.0283 1.3758 1.3449 1.1429 1.2585 1.144825 1.1944 1.0268 1.3167 1.3388 1.3891 1.8769 1.69492 50 1.2926 1.1123 1.2596 1.2776 1.5268 1.5655 1.559675 1.3074 1.5124 1.3496 1.3989 1.7087 1.5463 1.987990 1.1546 1.3790 1.5358 1.4232 1.4071 1.4268 1.509995 1.4390 1.3772 1.4038 1.5010 1.4845 1.4621 1.34295 .2440 .3409 .3710 .3479 .4433 .3307 .332110 .2128 .3186 .3134 .2673 .3133 .2600 .259225 .2206 .2779 .2500 .1911 .1985 .1817 .18573 50 .2642 .3124 .2796 .2098 .2003 .1901 .196275 .4830 .5712 .5082 .4196 .4141 .4246 .428890 .5675 .6741 1.4424 2.1979 2.9101 3.0432 2.689395 .3706 .4086 .3362 .2434 .2873 .2902 .24255 .5897 .6181 .7654 .6848 .6534 .5581 .598410 .6683 .7280 .6963 .7151 .7131 .5487 .614925 .7868 .9021 .8628 .9260 .8522 .6280 .77184 50 .8863 .9028 1.0367 .9756 .8857 .7060 .929475 1.1469 1.0062 1.3407 1.2437 1.1552 1.0030 1.262990 1.0186 .7683 .9350 1.0074 1.2206 1.2253 1.265495 .8232 1.1676 1.2418 1.1321 1.3094 1.2370 1.36135 1.0005 .9288 .8271 .8210 .8593 .8182 1.045510 .9803 .8067 .8110 .7087 .6996 .7198 .783925 .8882 .8185 .7302 .6896 .7526 .7068 .69375 50 .9355 .8865 .7418 .7195 .7865 .7126 .748475 .7912 .7641 .6951 .6913 .7780 .6891 .614390 .6652 .6134 .6638 .6575 .6251 .5467 .545395 .7441 .6392 .7238 .7509 .4973 .5558 .53815 .7130 .6700 .3863 .2467 .1504 .0837 .045810 .7108 .5926 .3783 .2615 .1421 .0777 .043025 .7238 .4533 .3469 .2345 .1200 .0653 .03366 50 .8988 .6632 .5003 .2934 .1519 .0895 .047475 1.0454 1.1292 1.1776 .8995 .6683 .5314 .426990 1.1628 1.0101 1.0870 .9141 .7288 .6182 .399095 1.2778 1.2221 1.0849 1.0468 1.0360 1.0858 .90685 .9757 .9863 .8467 .8761 .9827 1.1406 .922910 .8473 .9936 .8171 .8781 .8307 .9410 .892325 .7899 .9853 1.0138 1.0858 .9997 .9718 .86417 50 .8751 1.0812 .9577 .9023 .9340 .8641 .968275 .7495 .9854 .9255 .8956 .9263 .9314 .985990 .7731 .9627 .7527 .8954 .8356 .9303 .854795 1.0030 1.1180 .7957 .9192 .9060 .8608 .85475 .9588 1.1183 .9903 1.3472 1.2592 1.1689 1.177710 1.6802 1.5881 1.3739 1.3823 1.3327 1.7713 1.506925 .5884 .7594 .6898 .5860 .5872 .5671 .74608 50 .7576 .8052 1.0862 1.1494 1.1219 .9505 1.121275 .8491 .6907 .9374 1.0406 .8658 .7835 .914290 1.0050 .8195 .9651 1.0047 .8956 .8129 .937995 1.0253 .7329 1.0480 .9634 .8771 .7963 1.0006Table 1: Ratios of the Means of Estimated Variances to Replication Variances



Sequential Procedure for Simultaneous Estimation of Several Percentiles 15Run LengthModel Percentile 1024 2048 4096 8192 16384 32768 655365 .22523 .14964 .11150 .07593 .05746 .04037 .0280510 .20155 .15219 .11236 .07904 .05620 .04108 .0251425 .18503 .12985 .09535 .07134 .04928 .03055 .020541 50 .17892 .11272 .07697 .05192 .03744 .02659 .0194075 .18579 .11732 .07450 .06534 .04426 .03031 .0220090 .24394 .17601 .12537 .08663 .06039 .04145 .0271095 .30470 .24716 .16509 .14991 .09970 .06971 .052395 .23291 .15157 .11079 .07971 .05883 .04453 .0300910 .25086 .17352 .11039 .07919 .05794 .04082 .0261325 .19556 .12625 .08355 .05988 .04554 .03334 .022902 50 .16588 .12012 .07903 .05477 .03868 .03062 .0225675 .19347 .14437 .09571 .07163 .04815 .03660 .0254590 .30127 .22011 .16047 .11037 .07891 .05998 .0413295 .42794 .36744 .28097 .17938 .11130 .09884 .058115 .44590 .32261 .25081 .18580 .13988 .10110 .0766310 .36939 .26512 .19567 .15243 .11080 .08143 .0550325 .23388 .17549 .12621 .10184 .07090 .05032 .036183 50 .20170 .13779 .09544 .06449 .04466 .03493 .0244475 .31958 .21014 .13574 .10302 .07200 .05150 .0384390 .62161 .53909 .47661 .37199 .26679 .19371 .1566395 .37988 .27400 .23166 .17276 .10661 .08123 .067545 .41448 .31398 .25871 .19865 .15665 .09406 .0666210 .30186 .23184 .17198 .12625 .09370 .06108 .0437125 .19473 .14104 .09873 .07777 .05168 .03672 .028394 50 .17301 .12328 .09298 .06180 .04285 .03012 .0231375 .22034 .15742 .11461 .07799 .05732 .03757 .0242290 .26959 .20579 .17424 .11019 .09009 .06225 .0445595 .52749 .35657 .27560 .21668 .18910 .12710 .081295 .26735 .22292 .16103 .12138 .08642 .06356 .0477310 .25411 .17916 .11898 .09455 .06234 .04380 .0319425 .19746 .14713 .10065 .07035 .04730 .03571 .028405 50 .16458 .11047 .07377 .05436 .03559 .02919 .0216875 .18256 .12447 .08646 .06339 .04727 .03745 .0230490 .25608 .20776 .14428 .09368 .08009 .05350 .0379895 .36925 .30281 .25616 .16728 .14894 .11710 .086815 .21136 .14127 .11979 .08974 .07958 .07030 .0651910 .22779 .16963 .11267 .08050 .07132 .06115 .0504925 .18506 .13648 .08721 .07126 .05465 .04839 .041796 50 .16574 .11795 .07703 .05938 .04739 .03825 .0314175 .18481 .14118 .10185 .06986 .04858 .03878 .0317090 .24199 .18308 .13854 .10946 .09680 .08328 .0840295 .33158 .26601 .21398 .15079 .10826 .07613 .064315 .31203 .20342 .14370 .10219 .08192 .05570 .0403010 .22352 .18284 .14682 .09439 .06752 .04579 .0329425 .20505 .13197 .09261 .05975 .04651 .03372 .024517 50 .19644 .12647 .08641 .05757 .04306 .02870 .0220675 .18720 .13168 .10286 .06967 .05108 .03171 .0259490 .28771 .20289 .14638 .09748 .06127 .04623 .0324395 .30203 .28387 .22734 .14264 .11089 .08100 .058835 .21411 .14780 .10582 .07967 .05488 .03955 .0282610 .23757 .16868 .12014 .09932 .07155 .04410 .0278125 .21864 .13847 .09357 .06981 .05253 .03763 .024408 50 .18321 .11947 .07574 .05530 .03994 .02790 .0183475 .21187 .13526 .09082 .06607 .05364 .03787 .0225190 .23899 .17541 .11866 .08097 .06280 .04345 .0306395 .27802 .21413 .16290 .13363 .10245 .06382 .04723Table 2: Coe�cients of Variation to Estimated Variances



16 Kimmo E. E. Raatikainen:Model 1 2 3 4 5 6 7 8Run LengthMean 1125 1642 13079 1744 8070 2879 6367 3447St. deviat. 306 560 6513 586 695 1005 2035 952Coverage .94 .95 .87 .99 .90 .91 .96 .94Fraction of outliersin all dimensions 0 0 0 0 .02 0 0 0in two dimensions .01 0 .02 0 .04 .01 0 0in one dimension .05 .05 .11 .01 .04 .08 .04 .06Table 3: Summary of Sequential Estimation RunsSequential Estimation of Several PercentilesIn the last phase of the experiments we estimated the 50th, 75th, and 90th percentile of the responsetime from the eight models using the proposed sequential estimation procedure. The accuracyrequirement was " = 0:1 for each percentile and � = 0:1. A heuristic interpretation of the usedrequirement is that the relative errors of all the estimates are less than 10 % with a probability notless than 0.90. The minimum run length was 1024.With each of the eight models we carried out 101 independent replications. Since the truevalues of percentiles are unknown, we used the means of the order statistic estimates (phase one ofthe experiments) as the `exact' values.A summary of these sequential simulation runs is given in Table 3. The table contains themeans and standard deviations of the run lengths, coverages, and fractions of outliers. With theexception of Model 3, the run lengths are quite short and stable.The coverage is the fraction of runs, where all the estimates are accurate enough, i.e. j�j��̂j j �"j�̂j j for all j, where the �̂j 's are the estimated percentiles and the �j 's are their `exact' values.Only in Model 3 the observed coverage is less than 0.9, i.e. 1��. However, if we repeat a Bernoullitrial, where the probability of success is 0.9, 101 times, 88 is not a statistically exceptional result.In fact, the 95% con�dence interval for the number of successes is [85; 97].The fractions of outliers are classi�ed into three cathegories. They correspond to the numberof dimensions, in which the estimates do not satisfy the given accuracy requirement. Only in Model5 there are estimates, which are outliers in all of the three dimensions.Figures 4a and 4b give a visualization of the obtained percentile estimates. The three-dimensional estimates are projected on the faces of a cube. On each of the three visible facesa two-dimensional (marginal) scatter-plot is pasted. (For details, see [23].) The plotareas are
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Figure 4a: Estimated Prercentiles
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Figure 4b: Estimated Prercentiles



Sequential Procedure for Simultaneous Estimation of Several Percentiles 19�j � 20%. Estimates, which are out of the plotarea, are shown as bullets (�) on the frames. Theparallelograms on the faces correspond to �j � 10%. With the exception of Model 3, there are noserious departures from the `exact' values of percentiles. In Model 3, the estimated medians exceedtheir expectation by more than 20% in three cases.4. ConclusionsThe overall conslusion from these experiments is that the proposed sequential estimation procedureprovides the percentile estimates within the required accuracy. We have reported various di�cultiesin one of the eight models. We have not tried to use any other method to analyze that system.However, our intuitive belief is that the model would be di�cult also to other methods, since itsresponse time distribution is essentially a mixture of two quite di�erent distributions.References[1] Adiri, I. and B. Avi-Itzhak. 1969. \A Time-Sharing Queue with a Finite Number of Cus-tomers". Journal of the ACM 16, no. 2 (Apr.): 315{323.[2] Anderson, T. W. 1958. Introduction to Multivariate Statistical Analysis. Wiley, New York,N.Y.[3] Bartlett, M. S. and D. G. Kendal. 1946. \The Statistical Analysis of Variance Heterogeneityand the Logarithmic Transformation". Supplement to the Journal of the Royal StatisticalSociety 8, no. 1 : 128{138.[4] Blackman, R. B. and J. W. Tukey. 1959. The Measurement of Power Spectrum from the Pointof View of Communications Engineering . Dover, New York, N.Y.[5] Buzen, J. P. 1971. Queueing Network Models of Multiprogramming . Ph.D. Dissertation, Di-vision of Engineering and Applied Physics, Harvard University, Cambridge, Mass.[6] Cox, D. R. and D. V. Hinkley. 1974. Theoretical Statistics. Chapman and Hall, London, U.K.[7] Heidelberger, P. and Lewis, P. A. W. 1984. \Quantile Estimation in Dependent Sequences".Operations Research 31, no. 1 (Jan.-Feb.): 185{209.[8] Heidelberger, P. and P. D.Welch. 1981. \A Spectral Method for Con�dence Interval Generationand Run Length Control in Simulations". Communications of the ACM 24, no. 4 (Apr.): 233{245.[9] Iglehart, D. L. 1976. \Simulating Stable Stochastic Systems, VI: Quantile Estimation". Journalof the ACM 23, no. 2 (Apr.): 347{360.



20 Kimmo E. E. Raatikainen:[10] Jain, R. and I. Chlamtac. 1985. \The P2 Algorithm for Dynamic Calculation of Quantiles andHistograms without Storing Observations". Communications of the ACM 28, no. 10 (Oct.):1076{1085.[11] Kleijnen, J. P. C. 1987. Statistical Tools for Simulation Practitioners. Marcel Dekker, NewYork, N.Y.[12] Law, A. M. and J. S. Carson. 1979. \A Sequential Procedure for Determining the Length of aSteady-State Simulation". Operations Research 27, no. 5 (Sep.-Oct.): 1011{1025.[13] Law, A. M. and W. D. Kelton. 1982. \Con�dence Intervals for Steady-State Simulations, II:A Survey of Sequential Procedures". Management Science 28, no. 5 (May): 550{562.[14] Law, A. M. and W. D. Kelton. 1984. \Con�dence Intervals for Steady-State Simulations: I. ASurvey of Fixed Sample Size Procedures". Operations Research Science 32, no. 6 (Nov.-Dec.):1221{1239.[15] Moore, L.W. 1980. Quantile Estimation Methods in Regenerative Processes. Ph.D. Disserta-tion, Dept. of Statistics, Univ. of North Carolina, Chapel Hill, N.C.[16] Olshen, R. A. 1967. \Asymptotic Properties of the Periodogram of a Discrete StationaryProcess". Journal of Applied Probability 4, no. 4 (Dec.): 508{528.[17] Raatikainen, K. E. E. 1987a. \Simultaneous Estimation of Several Percentiles". Simulation 49,no. 4 (Oct.): 159{164.[18] Raatikainen, K. E. E. 1987b. \Run Length Control for Simultaneous Estimation of SeveralPercentiles in Dependent Sequences". In Proceedings of the Conference on Methodology andValidation, 1987 (Simulation Series, Vol 19, no. 1). Society for Computer Simulation, SanDiego, Calif.: 54{59.[19] Sargent, R. G. 1976. \Statistical Analysis of Simulation Output Data". In Proceedings of theSymposium on the Simulation of Computer Systems (Boulder, Colorado, Aug 10{12, 1976).Association for the Computing Machinery, New York, N.Y.: 39{50.[20] Seila, A. F. 1982a. \A Batching Approach to Quantile Estimation in Regenerative Simula-tions". Management Science 28, no. 5 (May): 573{581.[21] Seila, A. F. 1982b. \Estimation of Percentiles in Discrete Event Simulation". Simulation 39,no. 6 (Dec.): 193{200.[22] Sen, P. K. 1972. On the Bahadur Representation of Sample Quantiles for Sequences of �-mixingRandom Variables". Journal of Multivariate Analysis 2, no. 1 (Mar.): 77{95.



Sequential Procedure for Simultaneous Estimation of Several Percentiles 21[23] Tukey, P. A. and J. W. Tukey. 1981. \Preparation; Prechosen Sequences of Views". In Inter-preting Multivariate Data. Ed. V. Barnett. Wiley, Chichester, U.K.: 189{213.[24] Welch, P. D. 1961. \A Direct Digital Method of Power Spectrum Estimation". IBM Journalof Research and Development 5, no. 2 (Apr.): 141{156.[25] Zahorjan, J., E. D. Lazowska, and R. L. Garner. 1983. \A Decomposition Approach to Mod-elling High Service Time Variability." Performance Evaluation 3, no. 1 (Feb.): 35{54.I Asymptotic Properties of Order StatisticThe following result is given in [22].Let fXig1i=�1 be a stationary sequence of random variables de�ned on a probability space(
;A; P ). LetMj�1 andM1j+n be the �-�elds generated by fXigji=�1 and fXig1i=j+n, respectively.Suppose that E1 2 Mj�1, E2 2 M1j+n. If for all j (�1 < j <1) and n � 1�� P (E2jE1)� P (E2) �� � �(n) ;1 � �(1) � �(2) � : : : ; limn!1 �(n) = 0 , and1Xn=1 [�(n)]1=2 <1 ;then the sequence fXig satis�es the �-mixing condition.Let F (x) be the (marginal) distribution function ofXi. Let x̂p be the sample p-quantile (100pthpercentiles); x̂p = X(dnpe). Under the following conditions x̂p (0 < p < 1) has asymptotic normaldistribution:1. F (x) is absolutely continuous in some neighbourhood of xp,2. the density function f(x) is continuous , positive, and �nite in some neighbourhood of xp,and3. fXig satis�es the �-mixing condition.Futhermore, x̂p is asymptotically unbiased, and limfnVar(x̂p)g = hp(0)=f(xp)2 as n ! 1, wherehp(w) is the spectral density of binary sequence fIj(xp)g at frequency w:Ij(x) = ( 1 , if Xj � x ;0 , if Xj > x :



22 Kimmo E. E. Raatikainen:II Estimating Spectral DensitiesMost of the methods for estimating spectral densities h(!) are based on the periodogram. Theperiodogram, fI(n=N)g, of sequence fzjgNj=1 is de�ned byI(n=N) = 1N ������N�1Xj=0 zj+1 exp(�i2�jn=N)������2 .The periodogram can be e�ciently computed using the fast Fourier transform, especially when Nis a power of two. Under very general conditions (see e.g. [16]) the periodogram ordinates have thefollowing approximate properties:E[I(n=N)] � h(n=N) 0 < n < N=2 ;Var[I(n=N)] � h(n=N)2 0 < n < N=2 ;Cov[I(n=N;m=N)] � 0 0 < n 6= m < N=2 :Asymptotically periodogram ordinates are distributed as multiples of independent �2 randomvariables with two degrees of freedom. Hence the variances of periodogram ordinates do not decreaseas N increases. There are two main approaches to reduce the variance of spectral density estimates.The �rst one is based on local, usually weighted averaging, and the second one on averaging overtime segments.In averaging over time segments, the sequence is divided into non-overlapping subsequences,each of length Nb. Let zj;k ; j = 1; : : : ; Nb; ; k = 1; : : : ; K denote the j + (k � 1)Nbth observation in the original sequence. In each segmentperiodograms are evaluated:Ik(n=Nb) = 1Nb ������Nb�1Xj=0 zj+1;k exp(�i2�jn=Nb)������2 :The spectral density estimates are thenĥ(n=Nb) = 1K KXk=1 Ik(n=Nb) , 0 < n < Nb=2 :In [24] it is shown that the variances are reduced by the factor K in practical situations. Thespectral density estimates at di�erent frequencies remain approximately uncorrelated. Hence if weaverage 2M + 1 adjacent spectral density estimates ĥ((n�M)=Nb); : : : ; ĥ((n+M)=Nb), we obtainvariance reduction by factorK(2M+1). If only the non-overlapped averages are used, the estimatesare still approximately uncorrelated.



Sequential Procedure for Simultaneous Estimation of Several Percentiles 23Since the order of averagings does not chage the estimates, we can �rst evaluate the averagedspectral estimates in each segmentĥk(!j) = 12M + 1 MXm=�M Ik(!j +m=Nb) ;!j = j(2M + 1)�MNb ; j = 1; : : : ; n < Nb=(4M + 2)and then the averages of segments ^̂h(!j) = 1K KXk=1 ĥk(!j) :A common practice, established in [4], is to consider ^̂h(!j)=h(!j) as a multiple of a �2 variable.The degrees of freedom is taken as 2E2f^̂h(!j)g=Varf^̂h(!j)g, which in our case is 2K(2M + 1).III Derivation of Approximately Unbiased Regression EstimatesWe base our estimate of h(0) on the regression model y = X�+ ", whereyj = logf^̂h(!j)g+ �1, X = 0BB@ 1 !1 !12... ... ...1 !n !n2 1CCA ;and the "'s are independently and identically distributed: E(") = 0, and E("k) = �k ; k > 1.When ^̂h(!j)=h(!j) is considered as a multiple of a �2 random variable with d degrees offreedom, the �rst four �'s are then (see [3]):�1 � 1=d+ 1=(3d2) ;�2 � 2=(d� 1) ;�3 � �4=(d� 1)2 ; and�4 � 8=(d� 1)3 + 12=(d� 1)2 :The least square estimate of � is given by �̂ = Cy = �+C"; where C = (X0X)�1X0. HenceEf(�̂0� �0)kg = �kP c1jk = �0k .Our parameter of interest is exp(�0), whose natural estimate is exp(�̂0). In general g(T̂) is abiased estimate of g(T ), but the bias can be reduced (see e.g. [6, p. 260]). Using Taylor expansionexp(�̂0) can be written as exp(�̂0) = exp(�0) 1Xk=0 (�̂0 � �0)kk! :



24 Kimmo E. E. Raatikainen:Hence an approximately unbiased estimate of h(0) is obtained asĥ(0) = exp(�̂0)=(1 + �02=2 + �03=6 + �04=24):When a con�dence interval is constructed using normal approximation, the degrees of freedom inthe variance estimate is needed. A commonly used method is to consider ĥ(0)=h(0) as a multipleof a �2 variate. The degrees of freedom is then taken as 2Ef�2g2=Var(�2). Since ĥ(0)=h(0) =(P(�̂0 � �0)k=k!)=(1+ �02=2 + �03=6 + �04=24), the degrees of freedom is about 3=(3�02+ 2�03 + �04).


