
TuSelector

SipStack

Tu

FIFO

Tu

TlsTransport

TlsConnection

BaseSecurity

Security (file system security)

WinSecurity MacSecurity

TransportSelector

Dum
-Identity Checking
-s/mime manipulation

transm
it

SipMessage

SecurityAttributes

-signal
-encrypted
-Indentity
 strength

Fifo (often used as a way to communicate between threads)
add
getNext - it will block until things are in the Fifo,
there is also a method that will block only for so long.

TU
Fifo

Transaction
Fifo

Transport
Fifo

Transport
Fifo

outgoing
messages

incoming
messages

TransportSelector

Transport

InternalTransport

UDPTransport TCPBaseTransport

TlsTransportTcpTransport

ConnectionBase

Connection

TcpConnection TlsConnection

ConnectionManager

MsgHeaderScanner

SipMessage

has many connections

mBuffers

Connection

when connections die, we want
to remove them,
when we run out, we want to remove
the least used one.
to be fair, we want to round-robin
reads and writes

lru
read
write

TLS domain is used to bind to the specific TLS interface.

You can’t receive connections for multiple domains on the same TSL connection.

Internal is all the common code for the internal transports in ReSIP (file descriptor stuff
and fifo live here now. They were originally in the Transport.
Transport is the contract for TransportSelectors

ConnectionBase has all the logic for framing messages coming in for conneciton
oriented protocols.

Invite SIP 2.0

To
From
...
Contact
CRLF
CRLF
Body....

sent to
message
scanner

Headers

Body

data chunks read from wire + 5 bytes
(4 bytes for sip frag space + 1 byte sentinal)

Invite....From:Joe

got from the wire,
this part is a good,
parseable chunk

this part is a chunk, but isn’t good yet
this gets copied to the next buffer to
work with

From:Joe

Sending datagram (we are after DNS resolution, no via hint)

TransactionState TransportSel.

transmit(tuple)
determine
source
interface

find
transport

(populate via
& contact)

encode

UpdTransport FifoTransport

send
transmit

add

process

sendTo

getNext

Adding a transport

TransactionState
or SipStack?

TransportSel. TcpTransport FifoTransport

addTransport

DnsInterface

addTransportType

new(stateMacFifo)

add

new

listen

Receive msg over new tcp connection
TransportSel. TcpBaseTransportTransport

process(fdset)

processAllWriteRequests

ConnectionConnectionManager TcpConnectionTcpTransport

findConnection

socket
code

createConnnection

new

new

getConnMgr
getConnMgr

addConnection

requestWrite

processSomeWrites

after
returns

buildFdSet
buildFdSet

buildFdSet

addToWriteable

process

getNextWrite

performWrite
write

getConnMgr
getConnMgr

removeFromWriteable

buildFdSet

DnsStub RRCache

<<singleton>>
NAPTR

SRV SRV SRV

A A A

caching
based on
ttl

DnsInterface

DnsStub

ExternalDns

AresDns
Stack

Vip

blacklisting
interface
(the path to
the record,
not just the
record)

App Stack Transaction DnsResult DnsStub RRCacheRRVIP

send(msg)

new transaction

new

lookup

lookup(SRV)

lookup(RR_NAPTR)

ExternalDns

check cache

lookupRawResult(target,RR)

onRawResult (failure)

process

store failure

DnsResultSink

onDnsResult

command Fifo

process

check
lookup

result

cache all RRs

command Fifo

onDnsResult

lookup(a)
cache check

command Fifo

onDnsResult

Stack Transaction State TransportSelector DnsResult RRVIP

getnext

transmit

UdpTransport

process(SipMsg)

setVip

DnsResult RRVIP DnsStub

lookup

RRCache

check cache

transform

onDnsResult

onCommand

TransactionState DnsResult DnsStub RRCache
list or
RRs

black lists
by int

TransportSelector

getNext
transmit

process(transportFailure)

blacklist
blacklist

blacklist

blacklist

getNext

transmit

blacklist
process(transportFailure)

blacklist

blacklist

blacklist

503

SipMessage

Contents

ContentsFactoryMap

Contents

SdpContents
-Content-Type
-Content-Length

Contents* SipMessage::getContents

The body is not determined or parsed
until asked for - don’t ask unless you need it

SdpContents*sdp = dynamic_cast<SdpContents*>(msg.getContents());

<<singleton>>
map:mime->contentFactory

populated after static initialization,
but before main - this line is in the
.hxx file

.hxx: bool var=SdpContents::init();

you have to mention the class
in your main or this will never
get initialized (like in Java)
like:
#include “SdpContents.hxx”

Nice trick to avoid static initializer
and get early runtime init.

DUM

DialogSet

Dialog

ClientSubscription

When you are a writing
an application, you should
never make more than one
usage per dialog, however,
DUM will do the right
thing if this happens.

ClientRegistrationHandler ServerRegistrationHandler

ClientSubscriptionHandler
n

by event

1
1

0..1

1

0..1

MyApp
look at limpc for example of this

AppDialogSet

AppDialog

these are optional

AppDialogSetFactory

DUM

DialogSet

Dialog1 Dialog2

ClientInviteSession ClientInviteSession

1st 180 response 2nd 180 response

Client invite w/ 2 forks

Client register

DUM

DialogSet

ClientRegistration

Server register

DUM

DialogSet

ServerRegistration

Server invite

DUM

DialogSet

Dialog

ServerInviteSession

refer

refer-to: sipc:C

A B

C

Invite
A B

C

refer
Refer-to: C?Replaces=

Ack
200

Invite
A B

C

In
vi

teReplaces

Invite

Invite
did:

Invite

200(offer)

Ack(answer)

Invite

200(offer)

Ack

Invite
supported: 100 rel

183
Require: 100 rel
(offer)

Prack

Invite
(offer)

183
(answer)

UdpTransport MHS SipMessage

process

new char[]

receiveFrom
new(this)

addBuffer

scanChunk

setBody(...)

Process Incoming UDP

[0..n] hasDataToSend?

(tcp foo)
[0..n]buildFdSet

SipStack Statistics
Manager

Transaction
Controller

Main Event Loop

TU
Selector

<transaction>
TimerQueue TransportsTransport

Selector
buildFdSet

buildFdSet

DnsInterface External
DNS

...Ares
some FdConstructor

buildFdSet
buildFdSet

buildFdSet
[0..n]buildFdSet

getTimeTillNextProcessMs
getTimeTillNextProcessMs

hasDataToSend

(getStateMachineFifoSite)

[0..n]hasDataToSend?

Tcp
Connections

(if yes, ttnpm=0, return)

msTillNextTimer

requiresProcess?

getTimeTillNextProcessMs

requiresProcess?
if yes, ttnpm=50, return

msToNextTimer
why

(add App
FNs here)

process(FdSet)
process

process(FdSet)
process(FdSet)

process(FdSet)

process(FdSet)

DNS
Stub

process

...Ares

SipStack Statistics
Manager

Transaction
Controller

TU
Selector

<transaction>
TimerQueue

TransportsTransport
Selector

DnsInterface External
DNS

Tcp
Connections

DNS
Stub

[0..n]process(FdSet) (really
complicated
stuff happens
here)process

Transaction
State

Transaction
State

static call to process
(while the
TSM we
need to do
something)

dark
magic
happens
here
(see note)

process
(done to deal w/ shutdown)

app
Timer
Queue

app
Timer
Queue

process

Application/DialogUsageManager

TransactionController

App
Timer
QueueTransaction

Timer
Queue

SIP
Stack
Object

Async
DNS

Transaction
FSM

Transport Selector

TU
FIFO

TU
FIFO

Txn
FIFO

Transaction
FIFO

Transaction
FIFO

Transaction
FIFO

UDP
Trans

TCP
Trans

TLS
Trans

UDP
RecvMHS TCP

RecvMHS TLS
RecvMHS

Network

SIP Messages

TxnEvent

add

SIP Message

requestresponse

Txn
Events

add

SIP Message

MHS: Message Header Scanner

ares

TU
Selector

Message

reSIProcate
Architecture

Transaction
Controller

Transaction
State

Transaction
Fifo

Transaction Nightmare

Transport
Selector

process (static) getNext

transmit

getNext

getNext gives us a
keep alive

gets a SIP REGISTER
from a UDP transport

(Monday’s
diagram)

transmit 503

BTU overloaded?
(we are overloaded)

process

Sip
Message

we’re caught up here

process (static)

Transaction
Controller

Transaction
State

Transaction
Fifo

Server non-Invite w/UDP

Transport
Selector

process
process (static)

getNext

Sip
Message

gets a UDP REGISTERBTU overloaded?
(no) getTransactionId

isClientTransaction? (no)

findServerTransaction
(not found)

a = newTransactionState (server non-Invite, trying)

a.add
addServerTransaction(a)

TU
Selector

Transaction
User

haveTransactionUsers?

tu=selectTransactionUser
isForMe?

(yes)

(yes)

sendToTu
setTransactionUser(tu)

add(theSipMessage)
postToTransactionUser

puts things on
the TU Fifo

TU Fifo

add

Transaction
Controller

Transaction
State

Transaction
Fifo

TU sends response to non-invite request (UDP)

Transaction
TimerQueue

Transport
Selector

Sip
Message

process (static)stuff

msg1 = getNext
a = findMatchingServerTransaction

(nonINVITE final
response from app)

<<a>>
Transaction
State

processServerNonInvite(msg1)

transitionToCompleted

add(Timer J)

store pointer to response
in this object
for retransmission

sendToWire(msg1)

transmit(msg1)

process (static)
msg2 = getNext

retransmission o fUDP REGISTER
we just responded to

a = findMatchingServerTransaction

processServerNonInvite(msg2)

sendToWire(stored response)
retransmit

delete msg2

(because I’m complete)

Transaction
Controller

Transaction
State

Transaction
Fifo

TU sends response to non-invite request (UDP)

Transaction
TimerQueue

Transport
Selector

DnsInterface
<<a>>
Transaction
State

add(REGISTER over TCP)

stuff
happens

process
(no matching transaction exists)

a=new (client non invite, trying)
add

process client non-invite
store msg
for retransmission

add(TimerF)

send to wire
createDnsResult

DnsResult

createDnsResult
new

dnsResolve(msg)
lookup(RURI)

(which should 3263 on the URI)

lookup(RURI)

available?(no)

(and the original transmission
if we can’t send it instantly)

handle(this) {transactionState is a DnsHandler}
(must be from same thread as what created a)

available?(yes: available)

target = next()

this is a reliable transport
transmit (target)

TCP
Connection

stuff
add(transport failure)

much
later

more
stuff
happens
after
the
next
select
for
sure

process(msg) find
matching
transaction

