
August 24, 2001September 20, 2002 1 FIX 4.3 with Errata 20020920 - Volume 2

FINANCIAL INFORMATION
EXCHANGE PROTOCOL

(FIX)

Version 4.3 with Errata 20020920

VOLUME 2 – FIX SESSION PROTOCOL

Includes Errata adjustments as of September 20, 2002

Errata Purpose:
This document includes a list of minor adjustments to the FIX 4.3 Specification document due to
typographical errors or ambiguities. The nature and scope of Errata adjustments do not introduce
new functionality, additional fields, new values for existing fields, or new messages. Regretably
some functionality was introduced in FIX 4.3 which contained errors that required a new
value or field on a specific message in order to make the intended functionality
implementable. Any such exceptions to the “do not introduce” “additional fields” or “new
messages” Errata rule were kept to an absolute minimum using the “required to make the
intended functionality implementable” rationale. All of the items specified in this document
will be incorporated in the next release of the FIX Protocol. The list of items has been reviewed
and approved by the FIX Technical Committee and Steering Committees. Implementers of FIX
version 4.3 should refer to this document to ensure the most consistent implementation and
clearest understanding of the FIX protocol.

The specific adjustments made to the original FIX version 4.3 specification as a result of the
Errata can be seen and printed via Microsoft Word’s revision feature of this document. A
separate document with an itemized list of changes is available via the FIX website.

August 24, 2001September 20, 2002

August 24, 2001September 20, 2002 2 FIX 4.3 with Errata 20020920 - Volume 2

Contents – Volume 2

INTRODUCTION 3

TRANSMITTING FIXML OR OTHER XML-BASED CONTENT 3

FIX MESSAGE DELIVERY 3
Sequence Numbers: 3
Heartbeats: 3
Ordered Message Processing: 3
Possible Duplicates: 4
Possible Resends: 4
Data Integrity: 4
Message Acknowledgment: 4
Encryption: 5

SESSION PROTOCOL 6
Logon - 6
Message exchange - 7
Logout - 7
Message Recovery - 9
Standard Message header 11
Standard Message trailer 15

ADMINISTRATIVE MESSAGES 16
Heartbeat - 16
Logon - 17
Test Request - 19
Resend Request - 20
Reject (session-level) - 21
Sequence Reset (Gap Fill) - 23
Logout - 25

CheckSum Calculation 26

FIX Session Using a Multicast Transport 27

FIX Session-level Test Cases and Expected Behaviors 29
Applicability 29
When to send a Logout vs. when to just disconnect 29
When to send a Session Reject vs. when to ignore the message 29
What constitutes a garbled message 30
FIX Session-level State Matrix 31
FIX Logon Process State Transition Diagram 34

State 34
FIX Logout Process State Transition Diagram 35

Logout Initiator State 35
Test cases 37

Buyside-oriented (session initiator) Logon and session initiation test case 37
Sellside-oriented (session acceptor) Logon and session initiation test case 39
Test cases applicable to all FIX systems 41

August 24, 2001September 20, 2002 3 FIX 4.3 with Errata 20020920 - Volume 2

COMMUNICATION USING THE FIX SESSION PROTOCOL

 INTRODUCTION
 FIX was written to be independent of any specific communications protocol (X.25, asynch, TCP/IP, etc.) or
physical medium (copper, fiber, satellite, etc.) chosen for electronic data delivery. It should be noted that if
an “unreliable” or non-stream protocol is used, the Logon, Logout, and ResendRequest message processing
is particularly susceptible to unordered delivery and/or message loss.

 The protocol is defined at two levels: session and application. The session level is concerned with the
delivery of data while the application level defines business related data content. This document focuses on
the delivery of data using the “FIX Session Protocol”.

 TRANSMITTING FIXML OR OTHER XML-BASED CONTENT
 Note that while the FIX Session Protocol is based upon “Tag=Value” syntax for the Standard Header,
Standard Trailer, and the Administrative Messages which make up the FIX Session Protocol, it is possible
to send FIXML or other XML-based content (“payload”) via the FIX Session Protocol. The FIXML or
other XML-based content is enclosed in a traditional “Tag=Value” FIX standard header via the standard
header’s XmlDataLen and XmlData fields and followed by the “Tag=Value” FIX standard trailer. This
allows a FIX Engine (software which implements the FIX Session Protocol) to transmit FIXML or other
XML-based content via the robust, real-time asynchronous transport which has been in use for many years.
The generic MsgType field value for "XML message (e.g. non-FIX MsgType)" can be used when
transmitting XML content which is not defined with a FIX MsgType.

 FIX MESSAGE DELIVERY
 The following section summarizes general specifications for transmitting FIX messages.

 Sequence Numbers:
 All FIX messages are identified by a unique sequence number. Sequence numbers are initialized at the

start of each FIX session (see Session Protocol section) starting at 1 (one) and increment throughout the
session. Monitoring sequence numbers will enable parties to identify and react to missed messages and
to gracefully synchronize applications when reconnecting during a FIX session.

 Each session will establish an independent incoming and outgoing sequence series; participants will

maintain a sequence series to assign to outgoing messages and a separate series to monitor for sequence
gaps on incoming messages.

 Heartbeats:
 During periods of message inactivity, FIX applications will generate Heartbeat messages at regular

time intervals. The heartbeat monitors the status of the communication link and identifies incoming
sequence number gaps. The Heartbeat Interval is declared by the session initiator using the HeartBtInt
field in the Logon message. The heartbeat interval timer should be reset after every message is
transmitted (not just heartbeats). The HeartBtInt value should be agreed upon by the two firms and
specified by the Logon initiator and echoed back by the Logon acceptor. Note that the same HeartBtInt
value is used by both sides, the Logon “initiator” and Logon “acceptor”.

 Ordered Message Processing:

August 24, 2001September 20, 2002 4 FIX 4.3 with Errata 20020920 - Volume 2

 The FIX protocol assumes complete ordered delivery of messages between parties. Implementers
should consider this when designing message gap fill processes. Two options exist for dealing with
gaps, either request all messages subsequent to the last message received or ask for the specific
message missed while maintaining an ordered list of all newer messages. For example, if the receiver
misses the second of five messages, the application could ignore messages 3 through 5 and generate a
resend request for messages 2 through 5, or, preferably 2 through 0 (where 0 represents infinity).
Another option would involve saving messages 3 through 5 and resending only message 2. In both
cases, messages 3 through 5 should not be processed before message 2.

 Possible Duplicates:
 When a FIX engine is unsure if a message was successfully received at its intended destination or when

responding to a resend request, a possible duplicate message is generated. The message will be a
retransmission (with the same sequence number) of the application data in question with the
PossDupFlag included and set to "Y" in the header. It is the receiving application's responsibility to
handle the message (i.e. treat as a new message or discard as appropriate). All messages created as the
result of a resend request will contain the PossDupFlag field set to “Y”. Messages lacking the
PossDupFlag field or with the PossDupFlag field set to “N” should be treated as original transmissions.
Note: When retransmitting a message with the PossDupFlag set to Y, it is always necessary to
recalculate the CheckSum value. The only fields that can change in a possible duplicate message are
the CheckSum, OrigSendingTime, SendingTime, BodyLength and PossDupFlag. Fields related to
encryption (SecureDataLen and SecureData) may also require recasting.

 Possible Resends:
 Ambiguous application level messages may be resent with the PossResend flag set. This is useful when

an order remains unacknowledged for an inordinate length of time and the end-user suspects it had
never been sent. The receiving application must recognize this flag and interrogate internal fields
(order number, etc.) to determine if this order has been previously received. Note: The possible resend
message will contain exactly the same body data but will have the PossResend flag and will have a
new sequence number. In addition the CheckSum field will require recalculation and fields related to
encryption (SecureDataLen and SecureData) may also require recasting.

 Data Integrity:
 The integrity of message data content can be verified in two ways: verification of message length and a
simple checksum of characters.

 The message length is indicated in the BodyLength field and is verified by counting the number of
characters in the message following the BodyLength field up to, and including, the delimiter
immediately preceding the CheckSum tag (“10=”).

 The CheckSum integrity check is calculated by summing the binary value of each character from the
“8” of “8=“ up to and including the <SOH> character immediately preceding the CheckSum tag field
and comparing the least significant eight bits of the calculated value to the CheckSum value (see
"CheckSum Calculation" for a complete description).

 Message Acknowledgment:
 The FIX session protocol is based on an optimistic model; normal delivery of data is assumed (i.e. no
acknowledgment of individual messages) with errors in delivery identified by message sequence
number gaps. Each message is identified by a unique sequence number. It is the receiving
application's responsibility to monitor incoming sequence numbers to identify message gaps for
response with resend request messages.

August 24, 2001September 20, 2002 5 FIX 4.3 with Errata 20020920 - Volume 2

 The FIX protocol does not support individual message acknowledgment. However, a number of
application messages require explicit application level acceptance or rejection. Orders, cancel requests,
cancel/replace requests, allocations, etc. require specific application level responses, executions can be
rejected with the DK message but do not require explicit acceptance. See “Volume 1 - Business
Message Reject” for details regarding the appropriate response message to specific application level
messages.

 Encryption:
 The exchange of sensitive data across public carrier networks may make it advisable to employ data
encryption techniques to mask the application messages.

 The choice of encryption method will be determined by mutual agreement of the two parties involved
in the connection.

 Any field within a message can be encrypted and included in the SecureData field, however, certain
explicitly identified fields must be transmitted unencrypted. The clear (unencrypted) fields can be
repeated within the SecureData field to serve as an integrity check of the clear data.

 When encryption is employed, it is recommended but not required that all fields within the message
body be encrypted. If repeating groups are used within a message and encryption is applied to part of
the repeating group, then the entire repeating group must be encrypted.

 Embedded in the protocol are fields, which enable the implementation of a public key signature and
encryption methodology, straight DES encryption and clear text. The previously agreed upon
encryption methodology is declared in the Logon message. (For more detail on implementation of
various encryption techniques see the application notes section on the FIX Web Site.)

August 24, 2001September 20, 2002 6 FIX 4.3 with Errata 20020920 - Volume 2

 SESSION PROTOCOL
 A FIX session is defined as a bi-directional stream of ordered messages between two parties within a
continuous sequence number series. A single FIX session can exist across multiple sequential (not
concurrent) physical connections. Parties can connect and disconnect multiple times while maintaining a
single FIX session. Connecting parties must bi-laterally agree as to when sessions are to be started/stopped
based upon individual system and time zone requirements. Resetting the inbound and outbound sequence
numbers back to 1, for whatever reason, constitutes the beginning of a new FIX session.

 It is recommended that a new FIX session be established once within each 24 hour period. It is possible to
maintain 24 hour connectivity and establish a new set of sequence numbers by sending a Logon message
with the ResetSeqNumFlag set.

 The FIX session protocol is based on an optimistic model. Normal delivery of data is assumed (i.e. no
communication level acknowledgment of individual messages) with errors in delivery identified by message
sequence number gaps. This section provides details on the implementation of the FIX session layer and
dealing with message sequence gaps.

 The following terms are used throughout this section:

• Valid FIX Message is a message that is properly formed according to this specification and contains a
valid body length and checksum field

• Initiator establishes the telecommunications link and initiates the session via transmission of the initial
Logon message.

• Acceptor is the receiving party of the FIX session. This party has responsibility to perform first level
authentication and formally declare the connection request “accepted” through transmission of an
acknowledgment Logon message.

• FIX Connection is comprised of three parts: logon, message exchange, and logout.

• FIX Session is comprised of one or more FIX Connections, meaning that a FIX Session spans
multiple logins.

A FIX session is comprised of three parts: logon, message exchange and logout.

Logon -

Establishing a FIX connection involves three distinct operations: creation of a telecommunications
level link, authentication/acceptance of the initiator by the acceptor and message synchronization
(initialization). The sequence of connection follows:

• The session initiator establishes a telecommunication link with the session acceptor.

• The initiator sends a Logon message. The acceptor will authenticate the identity of the initiator by
examining the Logon message. The Logon message will contain the data necessary to support the
previously agreed upon authentication method. If the initiator is successfully authenticated, the
acceptor responds with a Logon message. If authentication fails, the session acceptor should shut
down the connection after optionally sending a Logout message to indicate the reason of failure.
Sending a Logout in this case is not required because doing so would consume a sequence number
for that session, which in some cases may be problematic. The session initiator may begin to send
messages immediately following the Logon message, however, the acceptor may not be ready to
receive them. The initiator must wait for the confirming Logon message from the acceptor before
declaring the session fully established.

After the initiator has been authenticated, the acceptor will respond immediately with a confirming
Logon message. Depending on the encryption method being used for that session, this Logon
message may or may not contain the same session encryption key. The initiator side will use the

August 24, 2001September 20, 2002 7 FIX 4.3 with Errata 20020920 - Volume 2

Logon message being returned from the acceptor as confirmation that a FIX session has been
established. If the session acceptor has chosen to change the session encryption key, the session
initiator must send a third Logon back to the other side in order to acknowledge the key change
request. This also allows the session acceptor to know when the session initiator has started to
encrypt using the new session key. Both parties are responsible for infinite loop detection and
prevention during this phase of the session.

• After authentication, the initiator and acceptor must synchronize their messages through
interrogation of the MsgSeqNum field before sending any queued or new messages. A
comparison of the MsgSeqNum in the Logon message to the internally monitored next expected
sequence number will indicate any message gaps. Likewise, the initiator can detect gaps by
comparing the acknowledgment Logon message’s MsgSeqNum to the next expected value. The
section on message recovery later in this document deals with message gap handling.

• It is recommended to wait a short period of time following the Logon or to send a TestRequest and
wait for a response to it before sending queued or new messages in order to allow both sides to
handle resend request processing. Failure to do this could result in a ResendRequest message
being issued by one’s counterparty for each queued or new message sent.

• It is also recommended that an engine should store out of sequence messages in a temporary queue
and process them in order when the gap is closed. This prevents generating resend requests for n-
>m, n->m+1, n->m+2, ... which can result in many resent PossDupFlag=Y messages.

• When using the ResetSeqNumFlag to maintain 24 hour connectivity and establish a new set of
sequence numbers, the process should be as follows. Both sides should agree on a reset time and
the party that will be the initiator of the process. Note that the initiator of the ResetSeqNum
process may be different than the initiator of the Logon process. One side will initiate the process
by sending a TestRequest and wait for a Heartbeat in response to ensure of no sequence number
gaps. Once the Heartbeat has been received, the initiator should send a Logon with
ResetSeqNumFlag set to Y and with MsgSeqNum of 1. The acceptor should respond with a
Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. At this point new messages
from either side should continue with MsgSeqNum of 2. It should be noted that once the initiator
sends the Logon with the ResetSeqNumFlag set, the acceptor must obey this request and the
message with the last sequence number transmitted “yesterday” may no longer be available. The
connection should be shutdown and manual intervention taken if this process is initiated but not
followed properly.

Message exchange -

After completion of the initialization process, normal message exchange begins. The formats for all
valid messages are detailed in the sections 'Administrative Messages' and 'Application Messages'.

Logout -
Normal termination of the message exchange session will be completed via the exchange of Logout
messages. Termination by other means should be considered an abnormal condition and dealt with as
an error. Session termination without receiving a Logout should treat the counterparty as logged out.

It is recommended that before sending the Logout message, a TestRequest should be issued to force a
Heartbeat from the other side. This helps to ensure that there are no sequence number gaps.

Before actually closing the session, the Logout initiator should wait for the opposite side to respond
with a confirming Logout message. This gives the acceptor a chance to perform any Gap Fill
operations that may be necessary. Once the messages from the ResendRequest have been received, the

August 24, 2001September 20, 2002 8 FIX 4.3 with Errata 20020920 - Volume 2

acceptor should issue the Logout. The session may be terminated if the acceptor does not respond in an
appropriate timeframe.

Note: Logging out does not affect the state of any orders. All active orders will continue to be eligible
for execution after logout.

August 24, 2001September 20, 2002 9 FIX 4.3 with Errata 20020920 - Volume 2

Message Recovery -

During initialization, or in the middle of a FIX session, message gaps may occur which are detected via
the tracking of incoming sequence numbers. The following section provides details on how to recover
messages.

As previously stated, each FIX participant must maintain two sequence numbers for each FIX session,
one each for incoming and outgoing messages which are initialized at ‘1’ at the beginning of the FIX
session. Each message is assigned a unique (by connection) sequence number, which is incremented
after each message. Likewise, every message received has a unique sequence number and the incoming
sequence counter is incremented after each message.

When the incoming sequence number does not match the expected number corrective processing is
required. Note that the SeqReset-Reset message (used only to recover from a disaster scenario vs.
normal resend request processing) is an exception to this rule as it should be processed without regards
to its MsgSeqNum. If the incoming message has a sequence number less than expected and the
PossDupFlag is not set, it indicates a serious error. It is strongly recommended that the session
be terminated and manual intervention be initiated. If the incoming sequence number is greater
than expected, it indicates that messages were missed and retransmission of the messages is requested
via the Resend Request (see the earlier section, Ordered Message Processing).

Note: For the purposes of the following paragraphs requester refers to the party requesting the
resend and resender refers to the party responding to the request. The process of resending
and synchronizing messages is referred as “gap filling”.

Upon receipt of a Resend Request, the resender can respond in one of three ways:

1. retransmit the requested messages (in order) with the original sequence numbers and
PossDupFlag set to “Y”

2. issue a SeqReset-GapFill with PossDupFlag set to “Y” message to replace the retransmission
of administrative and application messages

3. issue a SeqReset-Reset with PossDupFlag set to “Y” to force sequence number
synchronization

During the gap fill process, certain administrative messages should not be retransmitted. Instead, a
special SeqReset-GapFill message is generated. The administrative messages which are not to be
resent are: Logon, Logout, ResendRequest, Heartbeat, TestRequest and SeqReset-Reset and SeqReset-
GapFill. The SeqReset-GapFill can also be used to skip application messages that the sender chooses
not to retransmit (e.g. aged orders). This leaves Reject as the only administrative message which can
be resent.

All FIX implementations must monitor incoming messages to detect inadvertently retransmitted
administrative messages (PossDupFlag flag set indicating a resend). When received, these messages
should be processed for sequence number integrity only; the business/application processing of these
message should be skipped (e.g. do not initiate gap fill processing based on a resent ResendRequest).

If there are consecutive administrative messages to be resent, it is suggested that only one SeqReset-
GapFill message be sent in their place. The sequence number of the SeqReset-GapFill message is the
next expected outbound sequence number. The NewSeqNo field of the GapFill message contains the
sequence number of the highest administrative message in this group plus 1. For example, during
a Resend operation there are 7 sequential administrative messages waiting to be resent. They start
with sequence number 9 and end with sequence number 15. Instead of transmitting 7 Gap Fill
messages (which is perfectly legal, but not network friendly), a SeqReset-GapFill message may be sent.
The sequence number of the Gap Fill message is set to 9 because the remote side is expecting that
as the next sequence number. The NewSeqNo field of the GapFill message contains the number 16,
because that will be the sequence number of the next message to be transmitted.

August 24, 2001September 20, 2002 10 FIX 4.3 with Errata 20020920 - Volume 2

Sequence number checking is a vital part of FIX session management. However, a discrepancy in the
sequence number stream is handled differently for certain classes of FIX messages. The table below
lists the actions to be taken when the incoming sequence number is greater than the expected incoming
sequence number.

NOTE: In *ALL* cases except the Sequence Reset - Reset message, the FIX session should be
terminated if the incoming sequence number is less than expected and the PossDupFlag is
not set. A Logout message with some descriptive text should be sent to the other side before
closing the session.

Response by Message Type

Message Type Action to Be Taken on Sequence # mismatch

Logon Must always be the first message transmitted. Authenticate and accept the
connection. After sending a Logon confirmation back, send a ResendRequest
if a message gap was detected in the Logon sequence number.

Logout If a message gap was detected, issue a ResendRequest to retrieve all missing
messages followed by a Logout message which serves as a confirmation of
the logout request. DO NOT terminate the session. The initiator of the
Logout sequence has responsibility to terminate the session. This allows the
Logout initiator to respond to any ResendRequest message.

If this side was the initiator of the Logout sequence, then this is a Logout
confirmation and the session should be immediately terminated upon receipt.

The only exception to the “do not terminate the session” rule is for an invalid
Logon attempt. The session acceptor has the right to send a Logout message
and terminate the session immediately. This minimizes the threat of
unauthorized connection attempts.

ResendRequest Perform the Resend processing first, followed by a ResendRequest of your
own in order to fill the incoming message gap.

SeqReset-Reset Ignore the incoming sequence number. The NewSeqNo field of the SeqReset
message will contain the sequence number of the next message to be
transmitted.

SeqReset-GapFill Send a ResendRequest back. Gap Fill messages behave similar to a SeqReset
message. However, it is important to insure that no messages have been
inadvertently skipped over. This means that GapFill messages must be
received in sequence. An out of sequence GapFill is an abnormal condition

All Other Messages Perform Gap Fill operations.

August 24, 2001September 20, 2002 11 FIX 4.3 with Errata 20020920 - Volume 2

Standard Message header

Each administrative or application message is preceded by a standard header. The header identifies the
message type, length, destination, sequence number, origination point and time.

Two fields help with resending messages. The PossDupFlag is set to Y when resending a message as the
result of a session level event (i.e. the retransmission of a message reusing a sequence number). The
PossResend is set to Y when reissuing a message with a new sequence number (e.g. resending an order).
The receiving application should process these messages as follows:

PossDupFlag - if a message with this sequence number has been previously received, ignore message,
if not, process normally.

PossResend - forward message to application and determine if previously received (i.e. verify order id
and parameters).

Message Routing Details – One Firm-to-One Firm (point-to-point)

The following table provides examples regarding the use of SenderCompID, TargetCompID,
DeliverToCompID, and OnBehalfOfCompID when using a single point-to-point FIX session between two
firms. Assumption (A=sellside, B =buyside):

SenderCompID OnBehalfOfCompID TargetCompID DeliverToCompID

A to B directly A B

B to A directly B A

Message Routing Details – Third Party Message Routing

The FIX Session Protocol supports the ability for a single FIX session to represent multiple counterpaties.
This can be in a 1-to-many, many-to-1, or 1-to-1 fashion. In addition, some third parties may be connected
to other third parties effectively forming a “chain” of “hops” between the original message initiator and the
final message receiver. The SenderCompID, OnBehalfOfCompID, TargetCompID, and DeliverToCompID
fields are used for routing purposes.

When a third party sends a message on behalf of another firm (using OnBehalfOfCompID), that third party
may optionally add their details to the NoHops repeating group. This repeating group builds a “history” of
third parties through which the original message was re-transmitted. The NoHops repeating group is NOT
used to facilitate routing, rather it provides an audit trail of third party involvement to the receiver of a
message. An audit trail of intermediary involvement may be a requirement of some regulatory bodies or
counterparties. When a third party forwards a message on to the next hop (may be the end point or another
third party), that third party can add its hop details to the NoHops repeating group (e.g. its SenderCompID
as HopCompID, its SendingTime as HopSendingTime, and the received message’s MsgSeqNum or some
other reference as HopRefID).

Note that if OnBehalfOfCompID or DeliverToCompID message source identification/routing is used
for a FIX session, then it must be used on all Application messages transmitted via that session
accordingly (Reject the message if not).

The following table provides examples regarding the use of SenderCompID, TargetCompID,
DeliverToCompID, and OnBehalfOfCompID when using a single FIX session to represent multiple firms.
Assumption (A=sellside, B and C=buyside, Q=third party):

SenderCompID OnBehalfOf
CompID

TargetCompID DeliverTo
CompID

HopCompID HopSendingTime
(OnBehalfOfSen
dingTime)

August 24, 2001September 20, 2002 12 FIX 4.3 with Errata 20020920 - Volume 2

Send from A to B via Q

1) A sends to Q A Q B

2) Q sends to B Q A B Q A’s
SendingTime

B responds to A via Q

1) B sends to Q B Q A

2) Q sends to A Q B A Q B’s
SendingTime

Send from A to B *AND* C via Q

1) A sends to Q A Q B

2) Q sends to B Q A B Q A’s
SendingTime

3) A sends to Q A Q C

4) Q sends to C Q A C Q A’s
SendingTime

B *AND* C send to A via Q

1) B sends to Q B Q A

2) Q sends to A Q B A Q B’s
SendingTime

3) C sends to Q C Q A

4) Q sends to A Q C A Q C’s
SendingTime

Note that some fields (e.g. ClOrdID on a New Order Single) must be unique for all orders on a given
FIX session. Thus when using OnBehalfOfCompID (or DeliverToCompID) addressing, a
recommended approach is to prepend OnBehalfOfCompID (or DeliverToCompID) to the original
value. Thus if A sends Q ClOrdID value of "123", then Q could specify ClOrdID of "A-123" when
sending the message to C to ensure uniqueness.

The standard message header format is as follows:

Standard Message Header

Tag Field Name Req'd Comments

8 BeginString Y FIX.4.3 (Always unencrypted, must be first field in message)

9 BodyLength Y (Always unencrypted, must be second field in message)

35 MsgType Y (Always unencrypted, must be third field in message)

49 SenderCompID Y (Always unencrypted)

56 TargetCompID Y (Always unencrypted)

115 OnBehalfOfCompID N Trading partner company ID used when sending messages via a third
party (Can be embedded within encrypted data section.)

August 24, 2001September 20, 2002 13 FIX 4.3 with Errata 20020920 - Volume 2

128 DeliverToCompID N Trading partner company ID used when sending messages via a third
party (Can be embedded within encrypted data section.)

90 SecureDataLen N Required to identify length of encrypted section of message. (Always
unencrypted)

91 SecureData N Required when message body is encrypted. Always immediately
follows SecureDataLen field.

34 MsgSeqNum Y (Can be embedded within encrypted data section.)

50 SenderSubID N (Can be embedded within encrypted data section.)

142 SenderLocationID N Sender's LocationID (i.e. geographic location and/or desk) (Can be
embedded within encrypted data section.)

57 TargetSubID N “ADMIN” reserved for administrative messages not intended for a
specific user. (Can be embedded within encrypted data section.)

143 TargetLocationID N Trading partner LocationID (i.e. geographic location and/or desk)
(Can be embedded within encrypted data section.)

116 OnBehalfOfSubID N Trading partner SubID used when delivering messages via a third
party. (Can be embedded within encrypted data section.)

144 OnBehalfOfLocationID N Trading partner LocationID (i.e. geographic location and/or desk)
used when delivering messages via a third party. (Can be embedded
within encrypted data section.)

129 DeliverToSubID N Trading partner SubID used when delivering messages via a third
party. (Can be embedded within encrypted data section.)

145 DeliverToLocationID N Trading partner LocationID (i.e. geographic location and/or desk)
used when delivering messages via a third party. (Can be embedded
within encrypted data section.)

43 PossDupFlag N Always required for retransmitted messages, whether prompted by the
sending system or as the result of a resend request. (Can be embedded
within encrypted data section.)

97 PossResend N Required when message may be duplicate of another message sent
under a different sequence number. (Can be embedded within
encrypted data section.)

52 SendingTime Y (Can be embedded within encrypted data section.)

122 OrigSendingTime N Required for message resent as a result of a ResendRequest. If data is
not available set to same value as SendingTime (Can be embedded
within encrypted data section.)

212 XmlDataLen N Required when specifying XmlData to identify the length of a
XmlData message block. (Can be embedded within encrypted data
section.)

213 XmlData N Can contain a XML formatted message block (e.g. FIXML). Always
immediately follows XmlDataLen field. (Can be embedded within
encrypted data section.)

 See Volume 1: "FIXML Support"

August 24, 2001September 20, 2002 14 FIX 4.3 with Errata 20020920 - Volume 2

347 MessageEncoding N Type of message encoding (non-ASCII characters) used in a
message’s “Encoded” fields. Required if any “Encoding” fields are
used.

369 LastMsgSeqNumProcess
ed

N The last MsgSeqNum value received by the FIX engine and processed
by downstream application, such as trading system or order routing
system. Can be specified on every message sent. Useful for detecting
a backlog with a counterparty.

370 OnBehalfOfSendingTim
e

N (deprecated)

Used when a message is sent via a “hub” or “service bureau”. If A
sends to Q (the hub) who then sends to B via a separate FIX session,
then when Q sends to B the value of this field should represent the
SendingTime on the message A sent to Q. (always expressed in UTC
(Universal Time Coordinated, also known as “GMT”)

627 NoHops N Number of repeating groups of historical “hop” information. Only
applicable if OnBehalfOfCompID is used, however, its use is
optional. Note that some market regulations or counterparties may
require tracking of message hops.

���� 628 HopCompID N Third party firm which delivered a specific message either from the
firm which originated the message or from another third party (if
multiple “hops” are performed). It is recommended that this value be
the SenderCompID (49) of the third party.

���� 629 HopSendingTime N Time that HopCompID (628) sent the message. It is recommended
that this value be the SendingTime (52) of the message sent by the
third party.

���� 630 HopRefID N Reference identifier assigned by HopCompID (628) associated with
the message sent. It is recommended that this value be the
MsgSeqNum (34) of the message sent by the third party.

August 24, 2001September 20, 2002 15 FIX 4.3 with Errata 20020920 - Volume 2

Standard Message trailer

Each message, administrative or application, is terminated by a standard trailer. The trailer is used to
segregate messages and contains the three digit character representation of the Checksum value.

The standard message trailer format is as follows:

Standard Message Trailer

Tag Field Name Req'd Comments

93 SignatureLength N Required when trailer contains signature. Note: Not to be included
within SecureData field

89 Signature N Note: Not to be included within SecureData field

10 CheckSum Y (Always unencrypted, always last field in message)

August 24, 2001September 20, 2002 16 FIX 4.3 with Errata 20020920 - Volume 2

ADMINISTRATIVE MESSAGES
The administrative messages address the utility needs of the protocol. The following section describes each
message and provides the message layout.

Administrative messages will be generated from both sides of the connection.

Heartbeat -

The Heartbeat monitors the status of the communication link and identifies when the last of a string of
messages was not received.

When either end of a FIX connection has not sent any data for [HeartBtInt] seconds, it will transmit a
Heartbeat message. When either end of the connection has not received any data for (HeartBtInt +
“some reasonable transmission time”) seconds, it will transmit a Test Request message. If there is still
no Heartbeat message received after (HeartBtInt + “some reasonable transmission time”) seconds then
the connection should be considered lost and corrective action be initiated. If HeartBtInt is set to zero
then no regular heartbeat messages will be generated. Note that a test request message can still be sent
independent of the value of the HeartBtInt, which will force a Heartbeat message.

Heartbeats issued as the result of Test Request must contain the TestReqID transmitted in the Test
Request message. This is useful to verify that the Heartbeat is the result of the Test Request and not as
the result of a regular timeout.

The heartbeat format is as follows:

Heartbeat

Tag Field Name Req'd Comments

Standard Header Y MsgType = 0

112 TestReqID N Required when the heartbeat is the result of a Test Request message.

Standard Trailer Y

August 24, 2001September 20, 2002 17 FIX 4.3 with Errata 20020920 - Volume 2

Logon -

The logon message authenticates a user establishing a connection to a remote system. The logon
message must be the first message sent by the application requesting to initiate a FIX session.

The HeartBtInt (108) field is used to declare the timeout interval for generating heartbeats (same value
used by both sides). The HeartBtInt value should be agreed upon by the two firms and specified by the
Logon initiator and echoed back by the Logon acceptor.

Upon receipt of a Logon message, the session acceptor will authenticate the party requesting
connection and issue a Logon message as acknowledgment that the connection request has been
accepted. The acknowledgment Logon can also be used by the initiator to validate that the connection
was established with the correct party.

The session acceptor must be prepared to immediately begin processing messages after receipt of the
Logon. The session initiator can choose to begin transmission of FIX messages before receipt of the
confirmation Logon, however it is recommended that normal message delivery wait until after the
return Logon is received to accommodate encryption key negotiation.

The confirmation Logon can be used for encryption key negotiation. If a session key is deemed to be
weak, a stronger session key can be suggested by returning a Logon message with a new key. This is
only valid for encryption protocols that allow for key negotiation. (See the FIX Web Site’s Application
notes for more information on a method for encryption and key passing.)

The Logon message can be used to specify the MaxMessageSize supported (e.g. can be used to control
fragmentation rules for very large messages which support fragmentation). It can also be used to
specify the MsgTypes supported for both sending and receiving.

The logon format is as follows:

Logon

Tag Field Name Req'
d

Comments

Standard Header Y MsgType = A

98 EncryptMethod Y (Always unencrypted)

108 HeartBtInt Y Note same value used by both sides

95 RawDataLength N Required for some authentication methods

96 RawData N Required for some authentication methods

141 ResetSeqNumFlag N Indicates both sides of a FIX session should reset sequence
numbers

 383 MaxMessageSize N Can be used to specify the maximum number of bytes
supported for messages received

 384 NoMsgTypes N Specifies the number of repeating RefMsgTypes specified

 ���� 372 RefMsgType N Specifies a specific, supported MsgType. Required if
NoMsgTypes is > 0. Should be specified from the point of
view of the sender of the Logon message

 ���� 385 MsgDirection N Indicates direction (send vs. receive) of a supported
MsgType. Required if NoMsgTypes is > 0. Should be
specified from the point of view of the sender of the Logon
message

August 24, 2001September 20, 2002 18 FIX 4.3 with Errata 20020920 - Volume 2

 464 TestMessageIndicator N Can be used to specify that this FIX session will be
sending and receiving “test” vs. “production” messages.

 553 Username N

 554 Password N Note: minimal security exists without transport-level
encryption.

Standard Trailer Y

August 24, 2001September 20, 2002 19 FIX 4.3 with Errata 20020920 - Volume 2

Test Request -

The test request message forces a heartbeat from the opposing application. The test request message
checks sequence numbers or verifies communication line status. The opposite application responds to
the Test Request with a Heartbeat containing the TestReqID.

The TestReqID verifies that the opposite application is generating the heartbeat as the result of Test
Request and not a normal timeout. The opposite application includes the TestReqID in the resulting
Heartbeat. Any string can be used as the TestReqID (one suggestion is to use a timestamp string).

The test request format is as follows:

Test Request

Tag Field Name Req'd Comments

Standard Header Y MsgType = 1

112 TestReqID Y

Standard Trailer Y

August 24, 2001September 20, 2002 20 FIX 4.3 with Errata 20020920 - Volume 2

Resend Request -

The resend request is sent by the receiving application to initiate the retransmission of messages. This
function is utilized if a sequence number gap is detected, if the receiving application lost a message, or
as a function of the initialization process.

The resend request can be used to request a single message, a range of messages or all messages
subsequent to a particular message.

Note: the sending application may wish to consider the message type when resending messages; e.g. if
a new order is in the resend series and a significant time period has elapsed since its original inception,
the sender may not wish to retransmit the order given the potential for changed market conditions.
(The Sequence Reset-GapFill message is used to skip messages that a sender does not wish to resend.)

Note: it is imperative that the receiving application process messages in sequence order, e.g. if
message number 7 is missed and 8-9 received, the application should ignore 8 and 9 and ask for a
resend of 7-9, or, preferably, 7-0 (0 represents infinity). This latter approach is strongly recommended
to recover from out of sequence conditions as it allows for faster recovery in the presence of certain
race conditions when both sides are simultaneously attempting to recover a gap.

• To request a single message: BeginSeqNo = EndSeqNo

• To request a range of messages: BeginSeqNo = first message of range, EndSeqNo = last message
of range

• To request all messages subsequent to a particular message: BeginSeqNo = first message of range,
EndSeqNo = 0 (represents infinity) .

The resend request format is as follows:

Resend Request

Tag Field Name Req'd Comments

Standard Header Y MsgType = 2

7 BeginSeqNo Y

16 EndSeqNo Y

Standard Trailer Y

August 24, 2001September 20, 2002 21 FIX 4.3 with Errata 20020920 - Volume 2

Reject (session-level) -

The reject message should be issued when a message is received but cannot be properly processed due
to a session-level rule violation. An example of when a reject may be appropriate would be the receipt
of a message with invalid basic data (e.g. MsgType=&) which successfully passes de-encryption,
CheckSum and BodyLength checks. As a rule, messages should be forwarded to the trading
application for business level rejections whenever possible.

Rejected messages should be logged and the incoming sequence number incremented.

Note: The receiving application should disregard any message that is garbled, cannot be parsed or
fails a data integrity check. Processing of the next valid FIX message will cause detection of a
sequence gap and a Resend Request will be generated. Logic should be included in the FIX engine to
recognize the possible infinite resend loop, which may be encountered in this situation.

Generation and receipt of a Reject message indicates a serious error that may be the result of faulty
logic in either the sending or receiving application.

If the sending application chooses to retransmit the rejected message, it should be assigned a new
sequence number and sent with PossResend=Y.

Whenever possible, it is strongly recommended that the cause of the failure be described in the
Text field (e.g. INVALID DATA - FIELD 35).

If an application-level message received fulfills session-level rules, it should then be processed at a
business message-level. If this processing detects a rule violation, a business-level reject should be
issued. Many business-level messages have specific “reject” messages, which should be used. All
others can be rejected at a business-level via the Business Message Reject message. See Volume 1:
"Business Message Reject" message

Note that in the event a business message is received, fulfills session-level rules, however, the message
cannot be communicated to the business-level processing system, a Business Message Reject with
BusinessRejectReason = “Application not available at this time” should be issued.

Scenarios for session-level Reject:

SessionRejectReason

0 = Invalid tag number

1 = Required tag missing

2 = Tag not defined for this message type

3 = Undefined Tag

4 = Tag specified without a value

5 = Value is incorrect (out of range) for this tag

6 = Incorrect data format for value

7 = Decryption problem

8 = Signature problem

9 = CompID problem

10 = SendingTime accuracy problem

11 = Invalid MsgType

12 = XML Validation error

August 24, 2001September 20, 2002 22 FIX 4.3 with Errata 20020920 - Volume 2

13 = Tag appears more than once

14 = Tag specified out of required order

15 = Repeating group fields out of order

16 = Incorrect NumInGroup count for repeating group

17 = Non “data” value includes field delimiter (SOH character)

(Note other session-level rule violations may exist in which case
SessionRejectReason is not specified)

The reject format is as follows:

Reject

Tag Field Name Req'd Comments

Standard Header Y MsgType = 3

45 RefSeqNum Y MsgSeqNum of rejected message

371 RefTagID N The tag number of the FIX field being referenced.

372 RefMsgType N The MsgType of the FIX message being referenced.

373 SessionRejectReason N Code to identify reason for a session-level Reject message.

58 Text N Where possible, message to explain reason for rejection

354 EncodedTextLen N Must be set if EncodedText field is specified and must immediately
precede it.

355 EncodedText N Encoded (non-ASCII characters) representation of the Text field in
the encoded format specified via the MessageEncoding field.

Standard Trailer Y

August 24, 2001September 20, 2002 23 FIX 4.3 with Errata 20020920 - Volume 2

Sequence Reset (Gap Fill) -

The sequence reset message is used by the sending application to reset the incoming sequence number
on the opposing side. This message has two modes: “Sequence Reset-Gap Fill” when GapFillFlag is
‘Y’ and “Sequence Reset-Reset” when GapFillFlag is N or not present. The “Sequence Reset-Reset”
mode should ONLY be used to recover from a disaster situation which cannot be otherwise recovered
via “Gap Fill” mode. The sequence reset message can be used in the following situations:

• During normal resend processing, the sending application may choose not to send a message (e.g.
an aged order). The Sequence Reset – Gap Fill is used to mark the place of that message.

• During normal resend processing, a number of administrative messages are not resent, the
Sequence Reset – Gap Fill message is used to fill the sequence gap created.

• In the event of an application failure, it may be necessary to force synchronization of sequence
numbers on the sending and receiving sides via the use of Sequence Reset - Reset

 The sending application will initiate the sequence reset. The message in all situations specifies
NewSeqNo to reset as the value of the next sequence number immediately following the messages
and/or sequence numbers being skipped.

 If the GapFillFlag field is not present (or set to N), it can be assumed that the purpose of the sequence
reset message is to recover from an out-of-sequence condition. The MsgSeqNum in the header should
be ignored (i.e. the receipt of a Sequence Reset - Reset message with an out of sequence MsgSeqNum
should not generate resend requests). Sequence Reset – Reset should NOT be used as a normal
response to a Resend Request (use Sequence Reset – Gap Fill). The Sequence Reset – Reset should
ONLY be used to recover from a disaster situation which cannot be recovered via the use of
Sequence Reset – Gap Fill. Note that the use of Sequence Reset – Reset may result in the possibility
of lost messages

 If the GapFillFlag field is present (and equal to Y), the MsgSeqNum should conform to standard
message sequencing rules (i.e. the MsgSeqNum of the Sequence Reset-GapFill message should
represent the beginning MsgSeqNum in the GapFill range because the remote side is expecting that
next message sequence number).

 The sequence reset can only increase the sequence number. If a sequence reset is received attempting
to decrease the next expected sequence number the message should be rejected and treated as a serious
error. It is possible to have multiple ResendRequests issued in a row (i.e. 5 to 10 followed by 5 to 11).
If sequence number 8, 10, and 11 represent application messages while the 5-7 and 9 represent
administrative messages, the series of messages as result of the Resend Request may appear as
SeqReset-GapFill with NewSeqNo of 8, message 8, SeqReset-GapFill with NewSeqNo of 10, and
message 10. This could then followed by SeqReset-GapFill with NewSeqNo of 8, message 8,
SeqReset-GapFill with NewSeqNo of 10, message 10, and message 11. One must be careful to ignore
the duplicate SeqReset-GapFill which is attempting to lower the next expected sequence number. This
can be detected by checking to see if its MsgSeqNum is less than expected. If so, the SeqReset-GapFill
is a duplicate and should be discarded.

 The Sequence Reset format is as follows:

 Sequence Reset

 Tag Field Name Req'd Comments

 Standard Header Y MsgType = 4

 123 GapFillFlag N

August 24, 2001September 20, 2002 24 FIX 4.3 with Errata 20020920 - Volume 2

 36 NewSeqNo Y

 Standard Trailer Y

August 24, 2001September 20, 2002 25 FIX 4.3 with Errata 20020920 - Volume 2

 Logout -

 The logout message initiates or confirms the termination of a FIX session. Disconnection without the
exchange of logout messages should be interpreted as an abnormal condition.

 Before actually closing the session, the logout initiator should wait for the opposite side to respond
with a confirming logout message. This gives the remote end a chance to perform any Gap Fill
operations that may be necessary. The session may be terminated if the remote side does not respond
in an appropriate timeframe.

 After sending the Logout message, the logout initiator should not send any messages unless requested
to do so by the logout acceptor via a ResendRequest.

 The logout format is as follows:

 Logout

 Tag Field Name Req'd Comments

 Standard Header Y MsgType = 5

 58 Text N

 354 EncodedTextLen N Must be set if EncodedText field is specified and must immediately
precede it.

 355 EncodedText N Encoded (non-ASCII characters) representation of the Text field in
the encoded format specified via the MessageEncoding field.

 Standard Trailer Y

August 24, 2001September 20, 2002 26 FIX 4.3 with Errata 20020920 - Volume 2

 CheckSum Calculation

 The checksum of a FIX message is calculated by summing every byte of the message up to but not
including the checksum field itself. This checksum is then transformed into a modulo 256 number for
transmission and comparison. The checksum is calculated after all encryption is completed, i.e. the
message as transmitted between parties is processed.

 For transmission, the checksum must be sent as printable characters, so the checksum is transformed into
three ASCII digits.

 For example, if the checksum has been calculated to be 274 then the modulo 256 value is 18 (256 + 18 =
274). This value would be transmitted a |10=018| where "10="is the tag for the checksum field.

 A sample code fragment to generate the checksum field is as follows:

 char *GenerateCheckSum(char *buf, long bufLen)

 {
 static char tmpBuf[4];

 long idx;

 unsigned int cks;

 for(idx = 0L, cks = 0; idx < bufLen; cks += (unsigned int)buf[idx++]);

 sprintf(tmpBuf, “%03d”, (unsigned int)(cks % 256));

 return(tmpBuf);

 }

August 24, 2001September 20, 2002 27 FIX 4.3 with Errata 20020920 - Volume 2

 FIX Session Using a Multicast Transport

Justification
The FIX Protocol is made up of a session layer, an application layer and a field reference (data
dictionary). The latter two have usefulness independent of the FIX session. Furthermore, because the
FIX session is meant for point-to-point communication, it does not lend itself to publish/subscribe
models well (e.g. providing market data to numerous receivers). This application note defines how a
FIX messages can be distributed over a Multicast transport (e.g. IP Multicast). This note does not go
into details of a particular multicast technology, but rather discusses how a modified FIX session can be
implemented over it.

Overview of Session Layer
To ensure proper detection of gaps in messages in a multicast environment, except as noted below there
should only be one publisher of a particular subject. For the purpose of this document, “subject” refers
to how or what a receiver listens for and publisher sends information on (e.g. a subject name, a TCP
listen port, etc). The characteristics and features of a particular multicast technology as well as the
implementation (e.g. the primary publisher using one subject to accept resend requests from mulitple
primary receivers publishing the request) will control whether or not messages sent by a particular
publisher can be expected to be delivered in order. There can be any number of subscribers or
receivers of a particular subject.

In order for a message gap detecting session layer to exist, the sequence number that is placed on each
message should be assigned on a per subject basis. The consequence of not assigning on a per subject
basis is that the receivers (who might not subscribe to all subjects) would end up detecting gaps where
gaps really do not exist for that subject. Thus, receivers must maintain expected sequence numbers on a
per subject basis.

Unlike the standard FIX session layer (in FIX 4.0 and above), all of the administrative messages will
not consume a sequence number (as was the case in FIX 3.0). The type of data transmitted in a
multicast environment is one-way (from publisher to subscriber) and thus race conditions that are
possible in a standard two-way FIX 3.0 session are not applicable here. As such the requirement for
administrative messages consuming a sequence number (FIX.4.0 and greater) can be relaxed. In this
case administrative messages should contain the MsgSeqNum of the “next” message to be sent but not
“consume” or increment this number (this is consistent with FIX 3.0). Any business-level message
which is sent should increment the next outbound sequence number to allow receivers to detect gaps
and perform gap processing.

The TargetCompID on all messages should be set to some predefined value (assigned by the publisher)
such as the subject the message is being published out under. The SenderCompID on all messages
should be set to some predefined, static value assigned by the publisher which identifies the publisher.

Logon
Different from the normal FIX session two-way logon, the logon in a pub/sub or multicast environment
should be one-way from the publisher to the subscribers. It is used to notify subscribers that the
publisher’s session has begun.

August 24, 2001September 20, 2002 28 FIX 4.3 with Errata 20020920 - Volume 2

Heartbeats
Heartbeats are used as keep-alive packets in periods of application message inactivity. These messages
should only be transmitted by the publisher.

Resend Requests
If a receiver detects a sequence gap in the messages being sent by the publisher, it can transmit a
Resend Request on a separate well defined Resend Request subject. Upon receiving a Resend Request,
the publisher can choose to respond immediately, to schedule responses or to not satisfy the request at
all. Since Rejects messages are not used in a multicast environment, the publisher should ignore invalid
resend requests (e.g. seq num too high or duplicates). If when responding to a Resend Request, the
publisher wishes to skip over one or more messages, it should transmit a SequenceReset/GapFill
message to indicate that the gap should be artificially filled. Because the publisher may not respond
immediately, care should be taken on the receiving application to decide if the need for ordered
delivery should delay processing of subsequent messages.

If multiple application subjects are being published, either an individual Resend Request subject should
be defined for each application subject or Resend Requests should somehow identify the desired
application subject via the TargetSubID field in order for the application subject publisher to identify
which subject the request is for. In addition, it is also possible to establish a separate subject for
receivers to listen for responses to Resend Requests on rather than the primary message subject.

Some multicast technologies (e.g. IP Multicast) may not allow for the ability of a publisher to respond
to a specific subscriber’s resend request without also providing that same response to all subscribers
via the “primary” subject distribution channel. Subscribers must be capable of disgarding messages
which contain lower than expected sequence numbers.

Rejects
Session level rejects messages are not applicable or used in this model.

Logout
Different from the FIX session two-way logout, the logout in a multicast environment should be one-
way from the publisher to the subscribers. It is used to notify subscribers that the session has ended.

Additional Implementation Details
Additional implementation details concerning an actual business implementation of a multicast
environment should be documented and agreed to by the parties involved.

August 24, 2001September 20, 2002 29 FIX 4.3 with Errata 20020920 - Volume 2

FIX Session-level Test Cases and Expected Behaviors

Applicability
This document was last revised August 24, 2001 at which time FIX version 4.3 was the latest version of the FIX Protocol. Note that future amendments to this
document may be found on the FIX website and any version of this document published on a later date takes precedence over this version of the document. This
document is applicable to all versions of FIX 4.X (4.0, 4.1, 4.2, and 4.3) except where explicitly indicated.

When to send a Logout vs. when to just disconnect
In general a Logout message should always be sent prior to shutting down a connection. If the Logout is being sent due to an error condition, the Text field of the
Logout should provide a descriptive reason, so that operational support of the remote FIX system can diagnosis the problem. There are exceptions, when it is
recommended that a Logout message not be sent, these include:

• If during a logon either the SenderCompID, TargetCompID or IP address of the session initiator is invalid, it is recommended that the session be
immediately terminated and no Logout message sent. This login attempt might be an unauthorized attempt to break into your system; hence one does not
want to divulge any information about one’s FIX system, such as: which SenderCompID/TargetCompID values are valid or which version of FIX is
supported.

• If during a Logon one receives a second connection attempt while a valid FIX session is already underway for that same SenderCompID, it is
recommended that the session acceptor immediately terminate the second connection attempt and not send a Logout message. Sending a Logout
message runs the risk of interfering with and possibly adversely affecting the current active FIX connection. For example, in some FIX system
implementations, sending a Logout message might consume a sequence number that would cause an out of sequence condition for the established FIX
session.

In all other cases, if sending a Logout does not create risk or violate security, a Logout message should be sent with a descriptive text message.

When to send a Session Reject vs. when to ignore the message
The following excerpt is taken from the Reject message definition within the FIX Protocol specification:

August 24, 2001September 20, 2002 30 FIX 4.3 with Errata 20020920 - Volume 2

Note: The receiving application should disregard any message that is garbled, cannot be parsed or fails a data integrity check. Processing of the next valid
FIX message will cause detection of a sequence gap and a Resend Request will be generated. Logic should be included in the FIX engine to recognize the
possible infinite resend loop, which may be encountered in this situation.

The FIX Protocol takes the optimistic view; it presumes that a garbled message is received due to a transmission error rather than a FIX system problem.
Therefore, if a Resend Request is sent the garbled message will be retransmitted correctly. If a message is not considered garbled then it is recommended that a
session level Reject message be sent.

What constitutes a garbled message
• BeginString (tag #8) is not the first tag in a message or is not of the format 8=FIX.n.m.

• BodyLength (tag #9) is not the second tag in a message or does not contain the correct byte count.

• MsgType (tag #35) is not the third tag in a message.

• Checksum (tag #10) is not the last tag or contains an incorrect value.

If the MsgSeqNum(tag #34) is missing a logout message should be sent terminating the FIX Connection, as this indicates a serious application error that is likely
only circumvented by software modification.

August 24, 2001September 20, 2002 31 FIX 4.3 with Errata 20020920 - Volume 2

FIX Session-level State Matrix

Precedence State Initiator Acceptor Description

1 Disconnected-No
Connection
Today

Y Y Currently disconnected, have not attempted to establish a connection “today”, and no MsgSeqNum
have been consumed (next connection “today” will start at MsgSeqNum of 1)

2 Disconnected-
Connection
Today

Y Y Currently disconnected, have attempted to establish a connection “today” and thus MsgSeqNum have
been consumed (next connection “today” will start at MsgSeqNum of (last + 1))

3 Detect Broken
Network
Connection

Y Y While connected, detect a broken network connection (e.g. TCP socket closed). Disconnect the
network connection and “shutdown” configuration for this session.

4 Awaiting
Connection

N Y Session acceptor Logon awaiting network connection from counterparty

5 Initiate
Connection

Y N Session initiator Logon establishing network connection with counterparty

6 Network
Connection
Established

Y Y Network connection established between both parties

7 Initiation Logon
Sent

Y N Session initiator Logon send Logon message.

*** Exception: 24hr sessions.

8 Initiation Logon
Received

N Y Session acceptor Logon receive counterparty’s Logon message.

*** Exception: 24hr sessions.

9 Initiation Logon
Response

N Y Session acceptor Logon respond to counterparty’s Logon message with Logon message to
handshake

August 24, 2001September 20, 2002 32 FIX 4.3 with Errata 20020920 - Volume 2

10 Handle
ResendRequest

Y Y Receive and respond to counterparty’s ResendRequest sending requested messages and/or
SequenceReset-Gap Fill messages for the range of MsgSeqNum requested. Updated to include
rejecting Resend Request received with MsgSeqNum a MsgSeqNum that is <= LastSeqNum
processed.

11 Receive
MsgSeqNum Too
High

Y Y Receive too high of MsgSeqNum from counterparty, queue message, and send ResendRequest

12 Awaiting/Process
ing Response to
ResendRequest

Y Y Process requested MsgSeqNum PossDupFlag=Y resent messages and/or SequenceReset-Gap Fill
messages from counterparty. Queue incoming messages with MsgSeqNum too high

13 No messages
received in
Interval

Y Y No inbound messages (non-garbled) received in (HeartBeatInt + “reasonable period of time”), send
TestRequest

14 Awaiting/Process
ing Response to
TestRequest

Y Y Process inbound messages. Reset heart beat interval-related timer when ANY inbound message
(non-garbled) is received

15 Receive Logout
message

Y Y Receive Logout message from counterparty initiating logout/disconnect. If MsgSeqNum too high,
send ResendRequest. If sent, wait a reasonable period of time for complete response to
ResendRequest. Note that depending upon the reason for the Logout, the counterparty may be
unable to fulfill the request. Send Logout message as response and wait a reasonable period of time
for counterpaty to disconnect the network connection. Note counterparty may send a
ResendRequest message if Logout message response has MsgSeqNum too high and then re-initiate
the Logout process.

16 Initiate Logout
Process

Y Y Identify condition or reason to gracefully disconnect (e.g. end of “day”, no response after multiple
TestRequest messages, too low MsgSeqNum, etc.). Send Logout message to counterparty. Wait a
reasonable period of time for Logout response. During this time handle “new” inbound messages
and/or ResendRequest if possible. Note that some logout/termination conditions (e.g. loss of
database/message safe-store) may require immediate termination of the network connection
following the initial send of the Logout message. Disconnect the network connection and
“shutdown” configuration for this session.

August 24, 2001September 20, 2002 33 FIX 4.3 with Errata 20020920 - Volume 2

17 Active/Normal
Session

Y Y Network connection established, Logon message exchange successfully completed, inbound and
outbound MsgSeqNum are in sequence as expected, and Heartbeat or other messages are received
within (HeartBeatInt + “reasonable period of time”).

18 Waiting for
Logon ack

Y N Session initiator waiting for session acceptor to send back Logon ACK.

August 24, 2001September 20, 2002 34 FIX 4.3 with Errata 20020920 - Volume 2

FIX Logon Process State Transition Diagram

Session Initiator (e.g. buyside)

Action

Session Acceptor (e.g. sellside)

Action

Session Initiator (e.g. buyside)

State

Session Acceptor (e.g. sellside)

State

Start • Disconnected-No Connection
Today

• Disconnected-Connection Today

Awaiting Connection

Connect Initiate Connection

(Possible) Detect Broken Network
Connection

Awaiting Connection

Accept Connection Network Connection Established Network Connection Established

Initiate Logon Initiation Logon Sent Network Connection Established

Receive Initiation Logon Initiation Logon Sent Initiation Logon Received

Send Initiation Logon Response Initiation Logon Sent Initiation Logon Response

 (possible) Initiate Logout Process
(e.g. if MsgSeqNum too low)

(Possible) Receive MsgSeqNum Too
High

(Possible) Send ResendRequest Initiation Logon Response

(Possible) Receive MsgSeqNum Too

August 24, 2001September 20, 2002 35 FIX 4.3 with Errata 20020920 - Volume 2

High

Receive Initiation Logon Response (Possible) Active/Normal Session

(Possible) Initiate Logout Process
(e.g. if MsgSeqNum too low)

Initiation Logon Response

(Possible) Send ResendRequest (Possible) Active/Normal Session

(Possible) Receive MsgSeqNum Too
High

(Possible) Active/Normal Session

(Possible) Handle ResendRequest

Active/Normal Session Active/Normal Session

FIX Logout Process State Transition Diagram

Logout Initiator: Action Logout Acceptor Action Logout Initiator State Logout Acceptor State

Start • Active/Normal Session

• No messages received in Interval

• Awaiting/Processing Response to
TestRequest

• Active/Normal Session

• No messages received in Interval

• Initiation Logon Sent

• Awaiting/Processing Response to
TestRequest

• Awaiting validation of logon

• Receive MsgSeqNum Too High

• Awaiting/Processing Response to
ResendRequest

• Initiate Logout Process

• Waiting for Logon ack

August 24, 2001September 20, 2002 36 FIX 4.3 with Errata 20020920 - Volume 2

Send Logout message Logout Pending

Receive Logout message Logout Pending Logout Pending

(Possible) Receive MsgSeqNum Too
High

Send Logout response Logout Pending Awaiting Disconnect

(Possible) Send ResendRequest Logout Pending (Possible) Awaiting / Processing
Response to ResendRequest

(Possible) receive ResendRequest (Possible) Awaiting / Processing
Response to ResendRequest

(Possible) Awaiting Response to
ResendRequest

Receive Logout Response Disconnected-Connection Today Awaiting Disconnect

Disconnect Disconnected-Connection Today Disconnected-Connection Today

August 24, 2001September 20, 2002 37 FIX 4.3 with Errata 20020920 - Volume 2

Test cases
These test cases are from the perspective of the FIX system being tested. The FIX system receives the “Condition / Stimulus” and is expected to take the
appropriate action as defined by “Expected Behavior”.

Buyside-oriented (session initiator) Logon and session initiation test case
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. Establish Network connection Successfully open TCP socket with
counterparty

b. Send Logon message Send Logon message

c. Valid Logon message as response is
received

If MsgSeqNum is too high then send
Resend Request

1B Connect and Send Logon
message

Mandatory

d. Invalid Logon message is received 1. Generate an "error" condition in
test output.

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
Logon message’s MsgSeqNum
with Text referencing error
condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

August 24, 2001September 20, 2002 38 FIX 4.3 with Errata 20020920 - Volume 2

e. Receive any message other than a Logon
message.

1. Log an error “first message not a
logon”

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
message’s MsgSeqNum with Text
referencing error condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

August 24, 2001September 20, 2002 39 FIX 4.3 with Errata 20020920 - Volume 2

Sellside-oriented (session acceptor) Logon and session initiation test case
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. Valid Logon message 1. Respond with Logon response
message

2. If MsgSeqNum is too high then
send Resend Request

b. Logon message received with duplicate
identity (e.g. same IP, port, SenderCompID,
TargetCompID, etc. as existing connection)

1. Generate an "error" condition in
test output.

2. Disconnect without sending a
message (note sending a Reject or
Logout would consume a
MsgSeqNum)

1S Receive Logon message Mandatory

c. Logon message received with
unauthenticated/non-configured identity (e.g.
invalid SenderCompID, invalid
TargetCompID, invalid source IP address,
etc. vs. system configuration)

1. Generate an "error" condition in
test output.

2. Disconnect without sending a
message (note sending a Reject or
Logout would consume a
MsgSeqNum)

August 24, 2001September 20, 2002 40 FIX 4.3 with Errata 20020920 - Volume 2

d. Invalid Logon message 1. Generate an "error" condition in
test output.

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
Logon message’s MsgSeqNum
with Text referencing error
condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

Receive any message other
than a Logon message

Mandatory First message received is not a Logon
message.

1. Log an error “first message not a
logon”

2. Disconnect

August 24, 2001September 20, 2002 41 FIX 4.3 with Errata 20020920 - Volume 2

Test cases applicable to all FIX systems
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. MsgSeqNum received as expected Accept MsgSeqNum for the message

b. MsgSeqNum higher than expected Respond with Resend Request
message

c. MsgSeqNum lower than expected without
PossDupFlag set to Y

Exception: SeqReset-Reset

1. Whenever possible it is
recommended that FIX engine
attempt to send a Logout message
with a text message of
“MsgSeqNum too low, expecting
X but received Y”

2. (optional) Wait for Logout
message response (note likely will
have inaccurate MsgSeqNum) or
wait 2 seconds whichever comes
first

3. Disconnect

4. Generate an "error" condition in
test output.

2 Receive Message Standard
Header

Mandatory

d. Garbled message received 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages.

2. Generate a "warning" condition in
test output.

August 24, 2001September 20, 2002 42 FIX 4.3 with Errata 20020920 - Volume 2

e. PossDupFlag set to Y; OrigSendingTime
specified is less than or equal to SendingTime
and MsgSeqNum lower than expected

Note: OrigSendingTime should be earlier
than SendingTime unless the message is
being resent within the same second during
which it was sent.

1. Check to see if MsgSeqNum has
already been received.

2. If already received then ignore the
message, otherwise accept and
process the message.

f. PossDupFlag set to Y; OrigSendingTime
specified is greater than SendingTime and
MsgSeqNum as expected

Note: OrigSendingTime should be earlier
than SendingTime unless the message is
being resent within the same second during
which it was sent.

1. Send Reject (session-level)
message referencing inaccurate
SendingTime (>= FIX 4.2:
SessionRejectReason =
"SendingTime acccuracy
problem")

2. Increment inbound MsgSeqNum

3. Optional

• Send Logout message
referencing inaccurate
SendingTime value

• (optional) Wait for Logout
message response (note likely
will have inaccurate
SendingTime) or wait 2
seconds whichever comes
first

• Disconnect

Generate an "error" condition in test
output.

August 24, 2001September 20, 2002 43 FIX 4.3 with Errata 20020920 - Volume 2

g. PossDupFlag set to Y and
OrigSendingTime not specified

Note: Always set OrigSendingTime to the
time when the message was originally sent-
not the present SendingTime and set
PossDupFlag = “Y” when responding to a
Resend Request

1. Send Reject (session-level)
message referencing missing
OrigSendingTime (>= FIX 4.2:
SessionRejectReason = "Required
tag missing")

2. Increment inbound MsgSeqNum

h. BeginString value received as expected
and specified in testing profile and matches
BeginString on outbound messages.

Accept BeginString for the message

i. BeginString value (e.g. "FIX.4.2") received
did not match value expected and specified in
testing profile or does not match BeginString
on outbound messages.

1. Send Logout message referencing
incorrect BeginString value

2. (optional) Wait for Logout
message response (note likely will
have incorrect BeginString) or
wait 2 seconds whichever comes
first

3. Disconnect

4. Generate an "error" condition in
test output.

j. SenderCompID and TargetCompID values
received as expected and specified in testing
profile.

Accept SenderCompID and
TargetCompID for the message

August 24, 2001September 20, 2002 44 FIX 4.3 with Errata 20020920 - Volume 2

k. SenderCompID and TargetCompID values
received did not match values expected and
specified in testing profile.

1. Send Reject (session-level)
message referencing invalid
SenderCompID or TargetCompID
(>= FIX 4.2:
SessionRejectReason = "CompID
problem")

2. Increment inbound MsgSeqNum

3. Send Logout message referencing
incorrect SenderCompID or
TargetCompID value

4. (optional) Wait for Logout
message response (note likely will
have incorrect SenderCompID or
TargetCompID) or wait 2 seconds
whichever comes first

5. Disconnect

6. Generate an "error" condition in
test output.

l. BodyLength value received is correct. Accept BodyLength for the message

m. BodyLength value received is not correct. 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

n. SendingTime value received is specified in
UTC (Universal Time Coordinated also
known as GMT) and is within a reasonable
time (i.e. 2 minutes) of atomic clock-based
time.

Accept SendingTime for the message

August 24, 2001September 20, 2002 45 FIX 4.3 with Errata 20020920 - Volume 2

o. SendingTime value received is either not
specified in UTC (Universal Time
Coordinated also known as GMT) or is not
within a reasonable time (i.e. 2 minutes) of
atomic clock-based time.

Rationale:

Verify system clocks on both sides are in
sync and that SendingTime must be current
time

1. Send Reject (session-level)
message referencing inaccurate
SendingTime (>= FIX 4.2:
SessionRejectReason =
"SendingTime acccuracy
problem")

2. Increment inbound MsgSeqNum

3. Send Logout message referencing
inaccurate SendingTime value

4. (optional) Wait for Logout
message response (note likely will
have inaccurate SendingTime) or
wait 2 seconds whichever comes
first

5. Disconnect

6. Generate an "error" condition in
test output.

p. MsgType value received is valid (defined
in spec or classified as user-defined).

Accept MsgType for the message

q. MsgType value received is not valid
(defined in spec or classified as user-
defined).

1. Send Reject (session-level)
message referencing invalid
MsgType (>= FIX 4.2:
SessionRejectReason =
"Invalid MsgType")

2. Increment inbound
MsgSeqNum

3. Generate a "warning"
condition in test output.

August 24, 2001September 20, 2002 46 FIX 4.3 with Errata 20020920 - Volume 2

r. MsgType value received is valid (defined
in spec or classified as user-defined) but not
supported or registered in testing profile.

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing valid but
unsupported MsgType

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
valid but unsupported
MsgType (>= FIX 4.2:
BusinessRejectReason =
"Unsupported Message
Type")

3) Increment inbound MsgSeqNum

4) Generate a "warning" condition in
test output.

s. BeginString, BodyLength, and MsgType
are first three fields of message.

Accept the message

t. BeginString, BodyLength, and MsgType are
not the first three fields of message.

1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

3 Receive Message Standard
Trailer

Mandatory a. Valid CheckSum Accept Message

August 24, 2001September 20, 2002 47 FIX 4.3 with Errata 20020920 - Volume 2

b. Invalid CheckSum 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

c. Garbled message 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

d. CheckSum is last field of message, value
has length of 3, and is delimited by <SOH>.

Accept Message

e. CheckSum is not the last field of message,
value does not have length of 3, or is not
delimited by <SOH>.

1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

a. No data sent during preset heartbeat
interval (HeartBeatInt field)

Send Heartbeat message4 Send Heartbeat message Mandatory

b. A Test Request message is received Send Heartbeat message with Test
Request message's TestReqID

5 Receive Heartbeat message Mandatory Valid Heartbeat message Accept Heartbeat message

6 Send Test Request Mandatory No data received during preset heartbeat
interval (HeartBeatInt field) + "some
reasonable period of time" (use 20% of
HeartBeatInt field)

1. Send Test Request message

2. Track and verify that a Heartbeat
with the same TestReqID is

August 24, 2001September 20, 2002 48 FIX 4.3 with Errata 20020920 - Volume 2

received (may not be the next
message received)

7 Receive Reject message Mandatory Valid Reject message 1. Increment inbound MsgSeqNum

2. Continue accepting messages

8 Receive Resend Request
message

Mandatory Valid Resend Request Respond with application level
messages and SequenceReset-Gap
Fill for admin messages in requested
range according to "Message
Recovery" rules.

9 Synchronize sequence
numbers

Optional Application failure Send Sequence Reset - Reset message
or manually reset to 1 out-of-band.

a. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum > than expect sequence number

Issue Resend Request to fill gap
between last expected MsgSeqNum &
received MsgSeqNum.

b. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum = to expected sequence number

Set next expected sequence number =
NewSeqNo

10 Receive Sequence Reset
(Gap Fill)

Mandatory

c. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum < than expected sequence
number

and

 PossDupFlag = “Y”

Ignore message

August 24, 2001September 20, 2002 49 FIX 4.3 with Errata 20020920 - Volume 2

d. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum < than expected sequence
number

and

 without PossDupFlag = “Y”

1) If possible send a Logout message
with text of “MsgSeqNum too
low, expecting X received Y,”
prior to disconnecting FIX
session.

2) (optional) Wait for Logout
message response (note likely will
have inaccurate MsgSeqNum) or
wait 2 seconds whichever comes
first

3) Disconnect

4) Generate an "error" condition in
test output

e. Receive Sequence Reset (Gap Fill)
message with NewSeqNo <= MsgSeqNum

and

MsgSeqNum = to expected sequence number

Send Reject (session-level) message
with message “attempt to lower
sequnce number, invalid value
NewSeqNum=<x>”

11 Receive Sequence Reset
(Reset)

Mandatory a. Receive Sequence Reset (reset) message
with NewSeqNo > than expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Set expected sequence number
equal to NewSeqNo

August 24, 2001September 20, 2002 50 FIX 4.3 with Errata 20020920 - Volume 2

b. Receive Sequence Reset (reset) message
with NewSeqNo = to expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Generate a "warning" condition in
test output.

c. Receive Sequence Reset (reset) message
with NewSeqNo < than expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Send Reject (session-level)
message referencing invalid
MsgType (>= FIX 4.2:
SessionRejectReason = "Value is
incorrect (out of range) for this
tag")

3) Do NOT Increment inbound
MsgSeqNum

4) Generate an "error" condition in
test output

5) Do NOT lower expected sequence
number.

12 Initiate logout process Mandatory Initiate Logout 1) Send Logout message

2) Wait for counterparty to respond
with Logout message up to 10
seconds (note may not be received
if communications problem
exists). If not received, generate a
“warning” condition in test
output.

August 24, 2001September 20, 2002 51 FIX 4.3 with Errata 20020920 - Volume 2

3) Disconnect

a. Receive valid Logout message in response
to a solicited logout process

Disconnect without sending a message13 Receive Logout message Mandatory

b. Receive valid Logout message unsolicitied 1. Send Logout response message

2. Wait for counterparty to
disconnect up to 10 seconds. If
max exceeded, disconnect and
generate an “error” condition in
test output.

a. Receive field identifier (tag number) not
defined in specification.

Exception: undefined tag used is specified in
testing profile as user-defined.

1. Send Reject (session-level)
message referencing invalid tag
number (>= FIX 4.2:
SessionRejectReason = "Invalid
tag number")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

14 Receive application or
administrative message

Mandatory

b. Receive message with a required field
identifier (tag number) missing.

1. Send Reject (session-level)
message referencing required tag
missing (>= FIX 4.2:
SessionRejectReason = "Required
tag missing")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

August 24, 2001September 20, 2002 52 FIX 4.3 with Errata 20020920 - Volume 2

c. Receive message with field identifier (tag
number) which is defined in the specification
but not defined for this message type.

Exception: undefined tag used is specified in
testing profile as user-defined for this
message type.

1. Send Reject (session-level)
message referencing tag not
defined for this message type (>=
FIX 4.2: SessionRejectReason =
"Tag not defined for this message
type")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

d. Receive message with field identifier (tag
number) specified but no value (e.g.
"55=<SOH>" vs. "55=IBM<SOH>").

1. Send Reject (session-level)
message referencing tag specified
without a value (>= FIX 4.2:
SessionRejectReason = "Tag
specified without a value")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

e. Receive message with incorrect value (out
of range or not part of valid list of
enumerated values) for a particular field
identifier (tag number).

Exception: undefined enumeration values
used are specified in testing profile as user-
defined.

1. Send Reject (session-level)
message referencing value is
incorrect (out of range or not part
of valid list of enumerated values)
for this tag (>= FIX 4.2:
SessionRejectReason = "Value is
incorrect (out of range) for this
tag")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

August 24, 2001September 20, 2002 53 FIX 4.3 with Errata 20020920 - Volume 2

f. Receive message with a value in an
incorrect data format (syntax) for a particular
field identifier (tag number).

1. Send Reject (session-level)
message referencing value is in an
incorrect data format for this tag
(>= FIX 4.2:
SessionRejectReason = "Incorrect
data format for value")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

g. Receive a message in which the following
is not true: Standard Header fields appear
before Body fields which appear before
Standard Trailer fields.

1. Send Reject (session-level)
message referencing incorrect
message structure
header+body+trailer (>= FIX 4.3:
SessionRejectReason = “Tag
specified out of required order”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

h. Receive a message in which a field
identifier (tag number) which is not part of a
repeating group is specified more than once

1. Send Reject (session-level)
message referencing duplicate
field identifier (tag number) (>=
FIX 4.3: SessionRejectReason =
“Tag appears more than once”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

August 24, 2001September 20, 2002 54 FIX 4.3 with Errata 20020920 - Volume 2

i. Receive a message with repeating groups in
which the "count" field value for a repeating
group is incorrect.

1. Send Reject (session-level)
message referencing the incorrect
"count" field identifier (tag
number) (>= FIX 4.3:
SessionRejectReason = “Incorrect
NumInGroup count for repeating
group”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

j. Receive a message with repeating groups in
which the order of repeating group fields
does not match the specification.

1. Send Reject (session-level)
message referencing the repeating
group with incorrect field
ordering (>= FIX 4.3:
SessionRejectReason =
“Repeating group fields out of
order”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

August 24, 2001September 20, 2002 55 FIX 4.3 with Errata 20020920 - Volume 2

k. Receive a message with a field of a data
type other than "data" which contains one or
more embedded <SOH> values.

1. Send Reject (session-level)
message referencing field
identifier (tag number) with
embedded <SOH> (>= FIX 4.3:
SessionRejectReason = “Non
“data” value includes field
delimiter (SOH character)”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

?? Discard as valid response/outcome
too

or

Consider garbled and ignore message

l. Receive a message when application-level
processing or system is not available
(Optional)

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing
application message
processing is not available

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
application message
processing is not available
(>= FIX 4.2:
BusinessRejectReason =
"Application not available")

3) Increment inbound MsgSeqNum

4) Generate a "warning" condition in
test output.

August 24, 2001September 20, 2002 56 FIX 4.3 with Errata 20020920 - Volume 2

m. Receive a message in which a
conditionally required field is missing.

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing field
identifier (tag number) of the
missing conditionally
required field(s)

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
field identifier (tag number)
of the missing conditionally
required field(s) (>= FIX 4.2:
BusinessRejectReason =
"Conditionally Required
Field Missing")

3) Increment inbound MsgSeqNum

4) Generate an "error" condition in
test output.

N. Receive a message in which a field
identifier (tag number) appears in both
cleartext and encrypted section but has
different values.

1. Send Reject (session-level)
message referencing field
identifier (tag number) missing
from unencrypted section (>= FIX
4.2: SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

Generate an "error" condition in test
output.

August 24, 2001September 20, 2002 57 FIX 4.3 with Errata 20020920 - Volume 2

15 Send application or
administrative messages to
test normal and abnormal
behavior/response

Send more than one message of the same
type with header and body fields ordered
differently to verify acceptance. (Exclude
those which have restrictions regarding
order)

Messages accepted and subsequent
messages’ MsgSeqNum are accepted.

16 Queue outgoing messages Mandatory a. Message to send/queue while disconnected Queue outgoing messages. Note there
are two valid approaches:

1) Queue without regards to
MsgSeqNum

a) Store data for messages

2) Queue each message with the next
MsgSeqNum value

a) Store data for messages in
such a manner as to use and
“consume” the next
MsgSeqNum

Note: SendingTime (Tag#52): must
contain the time the message is sent
not the time the message was queued.

August 24, 2001September 20, 2002 58 FIX 4.3 with Errata 20020920 - Volume 2

b. Re-connect with queued messages 1. Complete logon process (connect,
and Logon message exchange)

2. Complete MsgSeqNum recovery
process if applicable.

3. Recommended short delay or
TestRequest/Heartbeat to verify
MsgSeqNum recovery completed.

4. Note there are two valid queuing
approaches:

a) Queue without regards to
MsgSeqNum

i) Send queued messages
with new MsgSeqNum
values (greater than
Logon message’s
MsgSeqNum)

b) Queue each message with the
next MsgSeqNum value

i) (note Logon message’s
MsgSeqNum will be
greater than the queued
messages' MsgSeqNum)

ii) Counterparty will issue
ResendRequest
requesting the range of
missed messages

iii) Resend each queued
message with
PossDupFlag set to Y

Note: SendingTime (Tag#52): must
contain the time the message is sent
not the time the message was queued.

August 24, 2001September 20, 2002 59 FIX 4.3 with Errata 20020920 - Volume 2

a. Receive Logon message with valid,
supported EncryptMethod

1. Accept the message

2. Perform the appropriate
decryption and encryption method
readiness

3. Respond with Logon message
with the same EncryptMethod

b. Receive Logon message with invalid or
unsupported EncryptMethod

1. Send Reject (session-level)
message referencing invalid or
unsupported EncryptMethod
value (>= FIX 4.2:
SessionRejectReason =
"Decryption problem")

2. Increment inbound MsgSeqNum

3. Send Logout message referencing
invalid or unsupported
EncryptMethod value

4. (optional) Wait for Logout
message response (note could
have decrypt problems) or wait 2
seconds whichever comes first

5. Disconnect

6. Generate an "error" condition in
test output.

17 Support encryption Optional

c. Receive message with valid
SignatureLength and Signature values.

Accept the message

August 24, 2001September 20, 2002 60 FIX 4.3 with Errata 20020920 - Volume 2

d. Receive message with invalid
SignatureLength value.

1. Send Reject (session-level)
message referencing invalid
SignatureLength value (>= FIX
4.2: SessionRejectReason =
"Signature problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

e. Receive message with invalid Signature
value.

1. Send Reject (session-level)
message referencing invalid
Signature value (>= FIX 4.2:
SessionRejectReason =
"Signature problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

Or consider decryption error or
message out of order, ignore message
(do not increment inbound
MsgSeqNum) and continue accepting
messages

f. Receive message with a valid
SecureDataLen value and a SecureData
value that can be decrypted into valid, parse-
able cleartext.

Accept the message

August 24, 2001September 20, 2002 61 FIX 4.3 with Errata 20020920 - Volume 2

g. Receive message with invalid
SecureDataLen value.

1. Consider decryption error or
message out of order, ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

h. Receive message with a SecureData value
that cannot be decrypted into valid, parse-
able cleartext.

1. Send Reject (session-level)
message referencing invalid
SecureData value (>= FIX 4.2:
SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

i. Receive message with one or more fields
not present in the unencrypted portion of the
message that "must be unencrypted"
according to the spec.

3. Send Reject (session-level)
message referencing field
identifier (tag number) missing
from unencrypted section (>= FIX
4.2: SessionRejectReason = "
Decryption problem")

4. Increment inbound MsgSeqNum

5. Generate an "error" condition in
test output.

August 24, 2001September 20, 2002 62 FIX 4.3 with Errata 20020920 - Volume 2

j. Receive message with incorrect handling of
"left over" characters (e.g. when length of
cleartext prior to encryption is not a multiple
of 8) according to the specified
EncryptMethod.

1. Send Reject (session-level)
message referencing incorrect
handling of "left over" characters
during encryption (>= FIX 4.2:
SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

a. Receive messages with
OnBehalfOfCompID and

DeliverToCompID values expected as
specified in testing profile and with correct
usage.

Accept messages18 Support third party
addressing

Optional

b. Receive messages with
OnBehalfOfCompID or

DeliverToCompID values not specified in
testing profile or incorrect usage.

1. Send Reject (session-level)
message referencing invalid
OnBehalfOfCompID or
DeliverToCompID (>= FIX 4.2:
SessionRejectReason = "CompID
problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

19 Test PossResend handling Mandatory a. Receive message with PossResend = “Y”
and application-level check of Message
specific ID indicates that it has already been
seen on this session

1. Ignore the message.

2. Generate a "warning" condition in
test output

August 24, 2001September 20, 2002 63 FIX 4.3 with Errata 20020920 - Volume 2

b. Receive message with PossResend = “Y”
and application-level check of Message
specific ID indicates that it has NOT yet been
seen on this session

1. Accept and process the message
normally.

20 Simultaneous Resend request
test

Mandatory Receive a Resend Request message while
having sent and awaiting complete set of
responses to a Resend Request message.

1. Perform resend of requested
messages.

2. Send Resend Request to request
missed messages

