|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\).
Defined in header
Parameters
x
, y
, z
: floating real arguments. x
, y
and z
must be non negative and at most one of them equal to 0. In any other case, the result is NaN.p
: Non-zero floating real arguments. In any other case, the result is NaN.Return value
the value of the \(\mathbf{R}_\mathbf{J}\) Carlson elliptic integral is returned.