|
inlineconstexpr |
Computes the Carlson's elliptic integral.
\( \mathbf{R}_\mathbf{D}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2} (t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\).
Defined in header
Parameters
x
, y
: floating real arguments. x
and y
must be strictly positive and y
non zero. In any other case, the result is NaN.z
: strictly positive floating real arguments. In any other case, the result is NaN.Return value
the value of the \(\mathbf{R}_\mathbf{D}\) Carlson elliptic integral is returned: