|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{G}(x, y) = \frac1{4\pi} \int_{0}^{2\pi}\int_{0}^{\pi} \scriptstyle\sqrt{x\sin^2\theta\cos^2\phi +y\sin^2\theta\sin^2\phi +z\cos^2\theta} \scriptstyle\;\mathrm{d}\theta\;\mathrm{d}\phi\).
Defined in header
Parameters
x
, y
, z
: floating real arguments. All arguments must be non-negative or the result is nan.Return value
the value of the \(\mathbf{R}_\mathbf{G}\) Carlson elliptic integral is returned: