◆ ellint_rg
Callable object computing the the Carlson's elliptic integral \(\frac1{4\pi} \int_{0}^{2\pi}\int_{0}^{\pi} \scriptstyle\sqrt{x\sin^2\theta\cos^2\phi +y\sin^2\theta\sin^2\phi +z\cos^2\theta} \scriptstyle\;\mathrm{d}\theta\;\mathrm{d}\phi\). Required header: Members Functions
, floating_real_value auto y)
Definition: value.hpp:103 Parameters
This computes the Carlson's elliptic integral \[ R_G(x, y, z) = \frac1{4\pi} \int_{0}^{2\pi}\int_{0}^{\pi} \sqrt{x\sin^2\theta\cos^2\phi +y\sin^2\theta\sin^2\phi +z\cos^2\theta} \mbox{d}\theta\mbox{d}\phi\] as described in Carlson, Numerische Mathematik, vol 33, 1 (1979) Parameters Return value Returns elementwise Carlson's integral. The result type is of the compatibility type of the three parameters. auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::ellint_rg Parameters
Return value A Callable object so that the expression Supported decoratorsno decorators are supported ExampleSee it live on Compiler Explorer #include <eve/function/ellint_rg.hpp>
#include <eve/wide.hpp>
#include <iostream>
using wide_ft = eve::wide<float, eve::fixed<4>>;
int main()
{
wide_ft pf = {1.0f, 0.0f, 1.5f, 3.0f};
wide_ft qf = {1.0f, 4.0f, 0.2f, 0.5f};
wide_ft rf = {2.0f, 1.0f, 0.1f, 0.4f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
<< "<- qf = " << qf << '\n'
<< "<- rf = " << rf << '\n'
float xf = 3.0f;
float yf = 0.5f;
float zf = 1.0f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
<< "<- yf = " << yf << '\n'
<< "<- zf = " << zf << '\n'
return 0;
}
constexpr callable_ellint_rg_ ellint_rg Callable object computing the the Carlson's elliptic integral . Definition: ellint_rg.hpp:90 |