◆ lrising_factorial
Callable object computing the lrising_factorial function i.e. \(\log\left(\frac{\Gamma(x+a)}{\Gamma(x)}\right)\). Required header: Members Functions
template< real_value I, floating_value T > auto operator()( I a, T x ) const noexcept;
Parameters
Return value auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::lrising_factorial Parameters
Return value A Callable object so that the expression Supported decorators
ExampleSee it live on Compiler Explorer #include <eve/function/pedantic/lrising_factorial.hpp>
#include <eve/wide.hpp>
#include <iostream>
#include <iomanip>
int main()
{
using w32_t = eve::wide<std::int32_t, eve::fixed<4>>;
using wf_t = eve::wide<float, eve::fixed<4>>;
w32_t n = {1, 2, -3, 7};
wf_t x = {1.0f, 1.5f, 2.0f, 2.5f};
std::cout << "---- simd" << std::setprecision(17) << '\n'
<< " <- n = " << n << '\n'
<< " <- x = " << x << '\n'
<< " -> pedantic(lrising_factorial(n, x)) = " << eve::pedantic(eve::lrising_factorial)(n, x) << '\n';
double xi = 1.8;
std::cout << "---- scalar" << '\n'
<< " xi = " << xi << '\n'
return 0;
}
constexpr callable_lrising_factorial_ lrising_factorial Callable object computing the lrising_factorial function i.e. . Definition: lrising_factorial.hpp:99 constexpr pedantic_type const pedantic Higher-order Callable Object imbuing more standard semantic onto other Callable Objects. Definition: pedantic.hpp:56 |