◆ ellint_1
Callable object computing the elliptic integrals of the first kind : \(\int_0^{\phi} \frac{\mathrm{d}t}{\sqrt{1-k^2\sin^2 t}}\). Required header: Members Functions
Definition: value.hpp:103 Parameters
computes the complete and incomplete elliptic integrals of the first kind : \[ F(\phi,k) = \int_0^{\phi} \frac{\mbox{d}t}{\sqrt{1-k^2\sin^2 t}}\] The complete case corresponds to \(\phi = \pi/2\).
In any other case the result is nan.
Return value Returns elementwise the elliptic integral of the first kind. The result type is of the compatibility type of the three parameters. auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::ellint_1 Parameters
Return value A Callable object so that the expression Supported decoratorsno decorators are supported ExampleSee it live on Compiler Explorer #include <eve/function/ellint_1.hpp>
#include <eve/wide.hpp>
#include <iostream>
#include <eve/constant/pio_2.hpp>
using wide_ft = eve::wide<float, eve::fixed<4>>;
int main()
{
wide_ft pf = {1.0f, 0.0f, 0.75f, 0.5f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
float xf = 0.1f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
wide_ft phi = {0.2f, 1.0e-30f, 0.5f, 0.0f};
std::cout << "---- simd" << '\n'
<< "<- phi = " << phi << '\n'
return 0;
}
constexpr callable_pio_2_ pio_2 Callable object computing the value. Definition: pio_2.hpp:54 constexpr callable_ellint_1_ ellint_1 Callable object computing the elliptic integrals of the first kind : . Definition: ellint_1.hpp:92 |