◆ ellint_d
Callable object computing the \(\mbox{D}\) elliptic integrals : \(\int_0^{\phi} \frac{\sin^2 t}{\sqrt{1-k^2\sin^2 t}} \scriptstyle\;\mathrm{d}t\). Required header: Members Functions
Definition: value.hpp:103 Parameters
computes the complete and incomplete D elliptic integrals : \[ F(\phi,k) = \int_0^{\phi} \frac{\sin^2 t}{\sqrt{1-k^2\sin^2 t}}\mbox{d}t\] The complete case corresponds to \(\phi = \pi/2\).
In any other case the result is nan.
Return value Returns elementwise the elliptic integral of the first kind. The result type is of the compatibility type of the three parameters. auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::ellint_d Parameters
Return value A Callable object so that the expression Supported decoratorsno decorators are supported ExampleSee it live on Compiler Explorer #include <eve/function/ellint_d.hpp>
#include <eve/wide.hpp>
#include <iostream>
#include <eve/constant/pio_2.hpp>
using wide_ft = eve::wide<float, eve::fixed<4>>;
int main()
{
wide_ft pf = {1.0f, 0.1f, 0.75f, 0.5f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
float xf = 0.1f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
wide_ft phi = {0.2f, 1.0e-30f, 0.5f, 0.3f};
std::cout << "---- simd" << '\n'
<< "<- phi = " << phi << '\n'
<< "<- pf = " << pf << '\n'
}
constexpr callable_ellint_d_ ellint_d Callable object computing the elliptic integrals : . Definition: ellint_d.hpp:92 |