◆ ellint_rd
Callable object computing the the Carlson's elliptic integral \( \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2} (t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\). Required header: Members Functions
, floating_real_value auto y
Definition: value.hpp:103 Parameters
This computes the Carlson's elliptic integral \[ R_D(x, y, z) = \frac32 \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} \mbox{d}t\] as described in Carlson, Numerische Mathematik, vol 33, 1 (1979) Parameters Return value Returns elementwise the Carlson's integral. The result type is of the compatibility type of the three parameters. auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::ellint_rd Parameters
Return value A Callable object so that the expression Supported decoratorsno decorators are supported ExampleSee it live on Compiler Explorer #include <eve/function/ellint_rd.hpp>
#include <eve/wide.hpp>
#include <iostream>
using wide_ft = eve::wide<float, eve::fixed<4>>;
int main()
{
wide_ft pf = {1.0f, 0.0f, 1.5f, 3.0f};
wide_ft qf = {1.0f, 4.0f, 0.2f, 0.5f};
wide_ft rd = {2.0f, 1.0f, 0.1f, 0.4f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
<< "<- qf = " << qf << '\n'
<< "<- rd = " << rd << '\n'
float xf = 3.0f;
float yf = 0.5f;
float zf = 1.0f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
<< "<- yf = " << yf << '\n'
<< "<- zf = " << zf << '\n'
return 0;
}
constexpr callable_ellint_rd_ ellint_rd Callable object computing the the Carlson's elliptic integral . Definition: ellint_rd.hpp:87 |