◆ ellint_rf
Callable object computing the Carlson's elliptic integral \(\frac12 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\). Required header: Members Functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp} */ /** auto operator()( floating_real_value auto x */ /** , floating_real_value auto y) , floating_real_value auto zconst noexcept; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Parameters
This computes the Carlson's elliptic integral \[ R_F(x, y, z) = \frac12 \int_{0}^{\infty} [(t+x)(t+y)(t+z)]^{-1/2} \mbox{d}t\] as described in Carlson, Numerische Mathematik, vol 33, 1 (1979) parameters must be non-negative and at most one zero or the result is nan. Return value Returns elementwise the Carlson's integral. The result type is of the compatibility type of the three parameters. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp} auto operator[]( conditional_expression auto cond ) const noexcept; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Higher-order function generating a masked version of eve::ellint_rf Parameters
Return value A Callable object so that the expression Supported decoratorsno decorators are supported ExampleSee it live on Compiler Explorer #include <eve/function/ellint_rf.hpp>
#include <eve/wide.hpp>
#include <iostream>
using wide_ft = eve::wide<float, eve::fixed<4>>;
int main()
{
wide_ft pf = {1.0f, 0.0f, 1.5f, 3.0f};
wide_ft qf = {1.0f, 4.0f, 0.2f, 0.5f};
wide_ft rf = {2.0f, 1.0f, 0.1f, 0.4f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
<< "<- qf = " << qf << '\n'
<< "<- rf = " << rf << '\n'
float xf = 3.0f;
float yf = 0.5f;
float zf = 1.0f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
<< "<- yf = " << yf << '\n'
<< "<- zf = " << zf << '\n'
return 0;
}
constexpr callable_ellint_rf_ ellint_rf Callable object computing the Carlson's elliptic integral . Definition: ellint_rf.hpp:85 |