◆ laguerre
Callable object computing the laguerre operation: \(\displaystyle \mbox{L}_{n} = \frac{e^x}{n!}\frac{d^n}{dx^n}(x^ne^{-x})\) or the associated laguerre operation \(\displaystyle \mbox{L}_{n}^{m} = (-1)^m\frac{d^m}{dx^m}\mbox{L}_{n+m}(x)\). Required header: Members Functions
auto operator()( integral_value auto m, integral_value auto n, floating_value auto x) const noexcept;
Definition: value.hpp:83 Definition: value.hpp:42 Parameters
Return value Returns elementwise the value of the 'physicists' laguerre polynomial of order The result type is of the common compatible type type of the parameters. auto operator[]( conditional_expression auto cond ) const noexcept;
Higher-order function generating a masked version of eve::laguerre Parameters
Return value A Callable object so that the expression Supported decorators
ExampleSee it live on Compiler Explorer #include <eve/function/laguerre.hpp>
#include <eve/wide.hpp>
#include <eve/constant/inf.hpp>
#include <eve/constant/minf.hpp>
#include <eve/constant/nan.hpp>
#include <iostream>
using wide_ft = eve::wide<double, eve::fixed<8>>;
using wide_it = eve::wide<int , eve::fixed<8>>;
int main()
{
wide_ft xd = {0.5, -1.5, 0.1, -1.0, 19.0, 25.0, 21.5, 10000.0};
wide_it n = {0, 1, 2, 3, 4, 5, 6, 7};
wide_ft x(0.5);
std::cout << "---- simd" << '\n'
<< "<- xd = " << xd << '\n'
<< "<- n = " << n << '\n'
<< "<- x = " << x << '\n'
double xs = 3.0;
std::cout << "---- scalar" << '\n'
<< "<- xs = " << xs << '\n'
return 0;
}
constexpr callable_laguerre_ laguerre Callable object computing the laguerre operation: or the associated laguerre operation . Definition: laguerre.hpp:94 |