OFELI

An Object Oriented Finite Element Library

Release 3.1.0

Rachid TouzANI
Laboratoire de Mathématiques Blaise Pascal
Université Clermont Auvergne

63177 Aubiere, France
e-mail: Rachid.Touzani@univ-bpclermont.fr

This document is a brief presentation of a library of C++ classes for the development
of object oriented finite element codes. The library (called OFELI for Object Finite
Element Library) is a toolkit of utility functions. The numerical solution of the linear
system of equations can be performed either using direct methods or more sophisticated
preconditioned iteration techniques.

The package contains a set of examples of finite element codes that can serve as
prototypes for more sophisticated applications.

The OFELI library was mainly developed by R. TouzANI. Other people have con-
tributed to this development either by writing a particular class, or by testing some
parts of the library or simply by fruitful discussions.

Rachid Touzani

March 2016

Contents

Introduction
The OFELI Package
License Agreement

Programming Considerations

4.1 Namespaces e
4.2 Variable Names
4.3 Inheritance
44 Templateclasses
45 Preand Post Processing

Classes in OFELI

5.1 Meshdata
52 Vectors
53 Matrices
5.4 Boundary conditions, Forces,
5.5 Materialdata
5.6 Finite Element Equations L.
5.7 Finite Element Shapes oL
5.8 OFELIFiles o
Installation

6.1 Installation Procedure on UNIX-like systems
6.2 Installation Procedure on Windows systems

N N NN NN

A W W W W W W w N

IS

vi

1 Introduction

Object oriented programming is widely used in scientific computing and particularly in
finite element coding. The finite element method is well adapted to object oriented
coding for the following reasons:

1. Finite element mesh data structuring is handled in an elegant and efficient way.
Moreover, for adaptive mesh strategies, object techniques are well adapted to
manipulating mesh elements and nodes. For instance, removing or adding an
element can be easily handled by using list structures to store element data.

2. Implementation of algorithms for the linear system of equations has to take matrix
storage schemes into account. For this, overloading and template features in C++
are well adapted and help implement storage independent codes.

3. Using other C++ finite element libraries is handled more efficiently thanks to
encapsulation properties of this language.

This document presents an object oriented library of classes for finite element solution
of boundary and initial value problems. The library is called OFELI (Object Finite
Element Library). It provides a finite element developer tools to write concise and user
friendly codes either for simple finite element programs or for large scale applications
using sophisticated solution techniques like preconditioned iteration algorithms.

The library OFELI is written in ANSI C++ and was tested on the most used computer
systems.

As in any C++ code, OFELI is programmed in such a way that a finite element
code developer manipulates objects rather than data. Hence, a collection of classes is
defined. Each class corresponds to a particular type of information in a Finite Element
computation.

This document constitutes a general overview in which we review some considerations
about the implementation of the OFELI library and then describe the most used classes.
The structure of our standard mesh data is then given. We then define the installation
procedure for both WINDOWS and UNix-like systems.

2 The OFELI Package

The OFELI package is more than a finite element code. Actually, OFELI is a (toolkit)
library of classes for Finite Element developments.

The current version of the package contains extensive documentation:
1. OFELI, An object Finite Element Library: The present document.

2. OFELI, User’s Guide : Here we present some examples and then a tutorial to
develop finite element codes and new classes in OFELL.

3. OFELI, Reference Guide : This document contains a detailed description of each
class of the kernel library. Naturally, only public members and attributes of classes
are outlined. Notice that problem dependent classes are not in this document.
For this, the following documents are to be consulted.

4. OFELI, Mathematical Foundations: This document is currently in preparation.

3 License Agreement

OFELI is free but Copyrighted software. It is distributed under the terms of the GNU
Lesser General Public License (LGPL). Details of the LGPL are in the file COPYING
that comes with the OFELI software package. More details can be found in the site
http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

4 Programming Considerations

Let us outline some of the principles we have followed in programming the OFELI
library.

4.1 Namespaces

The whole package OFELI is included in the namespace OFELI. This feature allows
combining the use of OFELI with other packages.

4.2 Variable Names

To clarify the programming, all classes have names that start with a capital letter like
Node or Mesh. Moreover, all public members and attributes share this property, private
or protected members having no capital letters and beginning with an “underscore”
sign _.

4.3 Inheritance

For efficiency reasons, we did not make an extensive use of inheritance between classes.
The only inheritances are from abstract classes and are therefore transparent for a
developer. Of course inheritance advantages can be exploited by a developer to complete
the OFELI classes.

1. All matrix classes inherit from a template abstract matrix class called
Matrix<>. This was useful for implementing some general purpose manipulation
of matrices that do not depend on the storage.

2. All finite element equation classes derive from the template abstract template
class AbsEqua<>.

3. Finite element shape classes inherit from an abstract class (called FEShape).

4. Mesh oriented vectors all inherit from an abstract class called AbsVect.

4.4 Template classes

We have made use of template classes in vector and matrix classes as well as in finite
element equation abstract class. This feature enables implementing for instance complex
valued problems.

4.5 Pre and Post Processing

The OFELI library contains a two-dimensional mesh generator without graphics facili-
ties. The package also contains utility applications to convert input and output files for
most popular mesh generators and graphical postprocessors. For any pre or postprocess-
ing, we recommend the use of most popular opensource software (see documentation
on file converters).

5 Classes in OFELI

To each type of data and each phase in a finite element computation corresponds a
C++ class. For the sake of clarity, we shall outline hereafter these classes through the
steps of execution of a finite element code. The reader can consult the details of each
class and its members in the reference manual.

5.1 Mesh data

Mesh data are introduced by a class called Mesh. This class allows to read, manipulate
and store mesh data. Moreover, to each type of mesh data corresponds a class. Thus,
an instance of class Mesh is a collection of instances of classes Node, Element, and
Side. A finite element mesh is defined by a list of nodes given by their coordinates and
a list of elements given by their node numbers. Moreover, to each node is associated
its number of degrees of freedom and a code to each degree of freedom. This code
is useful to prescribe node boundary conditions data (Dirichlet). In addition, to take
Neumann-like boundary conditions into account, a mesh can contain a collection of
sides. In practice these must be sides on the boundary of the domain but any side can
be defined with the help of mesh nodes.

5.2 Vectors

These classes were developed to facilitate basic operations on vectors. An overloading of
operators (), [1 and most algebraic operations is implemented to simplify this access.

5.3 Matrices

In order to consider several types of storage for finite element matrices, the library
OFELI contains a class for each storage type. Moreover, to handle operations that are
independent of these storage types we have a template abstract class called Matrix.
The implemented storage schemes are tridiagonal, skyline and sparse.

5.4 Boundary conditions, Forces, ...

A finite element computation needs several types of data. These data can be either
given manually or via a class written by the developer and that inherits from an abstract
class called UserData. Another way to introduce data is to describe them through
prescription files.

5.5 Material data

In order to define material properties, material data files are given in a specific direc-
tory. Each material has its own file that contains corresponding physical constants and
expressions. A default material is defined with default values for constants.

5.6 Finite Element Equations

A crucial step in the implementation of the finite element method consists in building
up finite element equations for each element and assembling them into a global linear
system of equations. A nonlinear problem is solved by an iteration algorithm where
each iteration consists in solving a linear problem. At the element level, finite element
equations are to be declared as instances of a class of finite element equations. Clearly,
the finite element equation depends on the problem to solve. For this, some classes of
typical problems (Thermics, Elasticity, Fluid, ...) are already developed and can serve
as prototypes for developing classes for new problems.

5.7 Finite Element Shapes

The above classes need information about finite element interpolation (choice of ele-
ment geometry, shape functions, ...). The OFELI library provides a family of classes
that implement several types for finite element shapes. For instance, class Triang3
corresponds to P; (or three-node) triangle.

5.8 OFELI Files

The library defines a standard for input and output files: All input and output files are
XML files as described in the User's guide of the library.

6 Installation

The OFELI library can be installed on any computer provided with an ANSI C++
compiler. The library is hosted by the Sourceforge server with the home page:

http://www.ofeli.net
This web page contains a brief presentation of OFELI and offers the possibility to

download the package.

6.1 Installation Procedure on UNIX-like systems

The following instructions apply to UNIX (like) systems only. The only thing you need
is a C++ compiler.

A clean installation can be performed in the following steps:
— 'gunzip’ and 'untar’ the downloaded file.
— Execute the configuration script by typing :
./configure

A first execution with argument —-help displays a short manual of the script. A
typical execution looks like:

./configure --prefix=/home/me/ofeli --libdir=/home/me/lib
--bindir=/home/me/bin --enable-release

— Then you can build the library by executing the commands
make
make install

— The test suite can be run through the command

test_ofeli.sh

6.2 Installation Procedure on Windows systems

To install on Windows systems, you can use either the Visual C+4 compiler or the
CodeBlocks free software. The installation procedure depends on the file you have
downloaded.

— If this is a zip file then you must unzip it, go the subdirectory Win32 where you can
find Visual C+4 workspace to install the library, utilities, examples, and demos.

You can also go to directory Win32/DevCpp and make use of DevCpp projects.

— If this is an exe file, than this is a standard windows setup installer. The library,
example files and demo files are already compiled. You can also recompile using
Visual C++ workspace.

	Introduction
	The OFELI Package
	License Agreement
	Programming Considerations
	Namespaces
	Variable Names
	Inheritance
	Template classes
	Pre and Post Processing

	Classes in OFELI
	Mesh data
	Vectors
	Matrices
	Boundary conditions, Forces, …
	Material data
	Finite Element Equations
	Finite Element Shapes
	OFELI Files

	Installation
	Installation Procedure on UNIX-like systems
	Installation Procedure on Windows systems

