TLM2.0 compliant CHI Transactor

Specification

Contents

1

Preface

1.1 About this Specification
1.2 References

1.3 Revisions

Introduction

Channel Fields Mapping
3.1 Chi_ctrl_extension: extension fields
3.2 Chi_snp_extension: Snooping request fields
3.3 Chi_data_extension: WDATA or RDATA fields

TLM-2.0 Transaction flow diagram
4.1 Transaction Flow without Snoop
4.2 Transaction Flow for Snoop-based transaction

DMI and Debug Transport Communication

Blocking Communication
6.1 b_transport and b_snoop Call Sequence

Non-blocking Communication
71 Extended Phases
7.2 Transaction to channel, socket and phase mapping

Implementation Guideline
8.1 Payload Extension
8.1.2 Structs for extensions
8.1.2 TLM extensions
8.2 Phases Declarations and Protocol traits
8.3 Socket Interfaces and Sockets

N O oo w NNNDN

oo o0

10

10
10

11
11
13

14
14
14
17
20
21

1 Preface

1.1 About this Specification

This specification details the representation of the CHI protocol in a TLM2.0 compliant
implementation. The definition of the protocol adheres to ‘AMBA® CHI™ Protocol
Specification 1.21)

It is assumed that the reader is familiar with the TLM-2.0 language reference manual (see
section 1.2) version TLM2.0.1 and has some basic experience with TLM modeling. Basic
understanding of the CHI protocol is beneficial.

1.2 References

This manual focuses on the extension of TLM2.0 to model the AMBA CHI protocol at
loosely and approximately timed accuracy. For more details on the protocol and semantics,
see the following manuals and specifications:

1) AMBA® 5 CHI™ Architecture Specification, 8" May 2018
“IHI0050C _amba_5 chi_architecture spec-3.pdf’
2) IEEE Std. 1666 TLM-2.0 Language Reference Manual (LRM)

1.3 Revisions

0.1 Suresh, Mahendra 20/June/2019 On same lines as AXI TLM
spec, Data structures, TLM
sockets and architecture
broad specification flow

0.2 Suresh, Mahendra 28/June/2019 Added TLM-2.0 extensions,
interfaces and socket
definitions

0.3 Kaushanski, 8/July/2020 Remove 2" socket pair,

Stanislaw update extension fields,

added, functional flow,
architecture, phases and
transitions diagrams.

Updated all chapters except
Blocking communication

chapter.
0.4 Kaushanski, 21/January/2021 | Remove chi_driver
Stanislaw implementation and

integration info, because it is
out of scope of this
specification. Updated
Blocking chapter.

Updated Non-Blocking

phases.
Updated structures and
extensions.

0.5 Jentzsch, Eyck 8/February/2021 | Correct errors in transaction to
channel, socket and phase
mapping

2 Introduction

This document specifies the way sockets communicate to each other while modeling

properties of the CHI protocol. As such all channels of a CHI interface are represented
by a single TLM2.0 socket.
The specification describes the way sockets exchange information not how it is to be

implemented.

The various channels used in CHI along with Request Node (RN) channel designation
and Slave Node (SN) channel designation is as given below:

Channel RN Channel SN Channel
REQ TXREQ (Outbound Request) RXREQ(Inbound Request)
WDAT TXDAT (Outbound Data) RXDAT(Inbound Data)
RDAT RXDAT (Inbound Data) TXDAT (Outbound Data)
CRSP RXRSP (Inbound Response) TXRSP (Outbound Response)
SNP RXSNP (Inbound Snoop Request) -
SRSP TXRSP (Outbound Response) -
L _______ x| Request Node (RN). gyp .--J
DI EHERL
RN-0 | E D DI|| RI|} i NI|| R| |
i A A S{{ri|P S| |!
. . i T T Pl : P :
‘; 4 i A 4 A 4 E_i \ 4 :
i = f """"" RomeNGas AN~~~ q
— ﬁ
. [Home Node (HN)
| R W Y c
+ E D D R
A 4 Q A A S
T T T P
\ 4
SN-0 [Slave Node (SN)

Figure 2. TLM-2.0 Sockets used in CHI System

Figure 1. Channels used in CHI System

CHI based system consists of RN (Requester Node), HN (Home Node) and SN (Slave Node)

components. In the above figure, a TLM-2.0 based set-up has been taken. The TLM-2.0 based

communication between an RN and its connected HN, is done using a pair of TLM-2.0
interface sockets and an initiator-target pair between HN and its connected SN.

3

Using the socket-pair between RN and HN,

(a) the main transaction ‘Request’ object is sent on the REQ (TXREQ) channel.
Typically, a forward non-blocking call ‘nb_transport_fw(..)’ is used to start the
transaction request with BEGIN_REQ phase.

(b) If transaction requires data to be sent from RN, for ex Write request or Snoop
response, then a ‘Data’ object is sent on the WDAT (TXREQ) channel through the
same socket using forward non-blocking path.

(c) For read operation, multiple ‘Data’ objects will come on the RDAT channel using
the non-blocking backward path.

(d) The ‘Response’ object from the Completer (SN or HN) to RN comes on the CRSP
channel through the same socket on the non-blocking backward path.

(a) ‘Snoop’ request transaction is sent from the HN (as Requester) to the RN-x (as
Completer) using backward non-blocking path of the same socket pair.

(b) It will also send a ‘Response’ object from the snooped RN-x to the HN, on SRSP
channel using the socket forward path.

(c) The response ‘CompAck’ from RN to HN, also comes on the SRSP channel and
hence using the same forward path.

All the calls are non-blocking and if transaction starts with BEGIN_REQ on the fwd
path, then the call returns with END_REQ phase, as the BEGIN_REQ to END_REQ
phase does not need any time. Even if the completer (HN) is busy while taking
‘Request’, it simply returns with ‘RetryAck’ so that channel is not blocked and it is tried
again by RN when the HN sends a PCrdResponse. Since none of the channels are
blocked by any transaction at any stage (request or snoop or response), hence we
suggest using non-blocking mechanism only.

At the link layer level, an L-Credit is expected from Receiver for the Transmitter to
send the ‘Request’ object. The feature is not fully implemented yet. The receiver does
not provide the L-Credit value. So in current implementation the number of L-Credits
is hardcoded in CHI driver to value of 8.

3 Channel Fields Mapping

The following chapters show the mapping of CHI fields to either the payload, its extansions of
phases.

Phases are defined for the non-blocking protocol only. Wherever possible the CHI protocol is
mapped to the generic protocol phases to ease interoperability with theTLM2.0 standard.
Additional phases are defined in the chapter “Extended Phases”

There are three CHI extension types that are transferred through the various channels to
complete a transaction
- ‘chi_ctrl_extension’ covering control part of access from RN to HN or HN to SN
- ‘chi_snp_extension’ request transaction object from HN to RN
- ‘chi_data_extension’ object that carries Write or Read or Snooped data between RN
and HN or HN and SN

3.1 Chi_ctrl_extension: extension fields
The ‘chi_ctrl_extension’ consists of three data structures (common, request and response)
and can be used to start a transaction on the ‘REQ’ channel. This comes from the RN
(Requester Node) to the HN (Home Node). This request is made from the
“chi_intiator_socket” of the RN (or HN), and handled by the corresponding connected

“chi_target_socket” on the HN (or SN).

Field where data structure name Type
Addr payload tim_generic_payload |addr uint64_t
QoS extension [chi::common qos uint32_t
SrclD extension [chi::common src_id uint16_t
ITxnID extension [chi::common txn_id uint16_t
AllowRetry extension [chi::request allow_retry bool
Endian extension [chi::request endian bool
Excl extension [chi::request excl bool
ExpCompAck extension [chi::request exp_comp_ack bool
LikelyShared extension [chi::request likely_shared bool
LPID extension [chi::request Ip_id unit8_t
MaxFlit extension [chi::request max_flit unit8_t
MemAttr extension [chi::request mem_attr unit4_t
NS extension [chi::request ns bool
Opcode extension [chi::request opcode req_opcode_e
Order extension [chi::request order uint8_t
PCrdType extension [chi::request pcrd_type uint8_t
ReturnNID extension [chi::request return_n_id uint16_t
ReturnTxnID extension [chi::request return_txn_id uint8_t
RSVDC extension [chi::request rsvdc uint32_t
Size extension [chi::request size uint8_t
SnoopMe extension [chi::request snoop_me bool
snpAttr extension [chi::request snp_attr bool
StashLPID extension [chi::request stash_Ip_id uint8_t
StashLPIDValid | extension [chi::request stash_Ip_id_valid [bool

5

StashNID extension [chi::request stash_n_id uint16_t
StashNIDValid extension [chi::request stash_n_id_valid |bool

TgtlD extension [chi::request tgt_id uint8_t
ITraceTag extension [chi::request trace tag bool

DBID extension [chi:response db id uint8 t
PCrdType extension [chi:response pcrd type uint8 t
RespErr extension [chi:response resp err uint8 t
FwdState extension [chi:response fwd state uint8 t
DataPull extension (chi:response data_pull uint8 t
TraceTag extension [chi::response trace trag bool

TgtlD extension [chi::response tgt_id uint16 t
Opcode extension [chi:response opcode rsp_opcode e
Resp extension [chi:response resp rsp_resptype e

3.2 Chi_snp_extension: Snooping request fields

The Snoop extension consists of three data structures (common, snp_request and
response) and is used for snooping transactions on the SNP channel. Snoop transactions
come from the HN (Home Node) to the RN (Requester Node). This request is made from
the HN, and handled by the RN.

Field where data structure name Type
Addr payload tim_generic_payload addr uint64 t
QoS extension (chi::common gqos uint32_t
SrclD extension [chi::common src_id uint16_t
ITxnID extension [chi::common txn_id uint16_t
DoNotDataPull extension [chi::isnp_request do_not_data_pull |bool
DoNotGoToSD | extension [chizsnp_request do_not_goto_sd |bool
FwdNID extension [chi:isnp_request fwd_n_id uint16_t
FwdTxnID extension [chizsnp_request fwd_txn_id uint8_t
NS extension [chi:snp_request ns bool
Opcode extension [chi:snp_request opcode snp_opcode_e
RetToSrc extension [chi::snp_request ret to_src Bool
StashLPID extension [chi:isnp_request stash_Ip_id uint8_t
StashLPIDValid | extension [chi:isnp_request stash_Ip_id_valid [bool
TraceTag extension [chizsnp_request trace_tag bool
VMIDExt extension [chi:isnp_request vm_id_ext uint8_t
DBID extension (chi:response db_id uint8_t
PCrdType extension (chi:response pcrd_type uint8_t
RespErr extension (chi:response resp_err uint8_t
FwdState extension (chi:response fwd_state uint8_t
DataPull extension (chi:response data_pull uint8_t
TraceTag extension [chi::response trace_trag bool
TgtiD extension [chi::response tgt_id uint16_t
Opcode extension (chi:response opcode rsp_opcode e

6

3.3

‘Resp

‘extension ‘chi::response

resp

rsp_resptype_e

Chi_data_extension: WDATA or RDATA fields

The ‘Data’ extension consists of two data structures (common and data) can be used in
the following ways

- sent with the ‘Request’ for Write operation on WDAT (TXDATA) channel

- it can come with the ‘Reponse’ for Read operation on RDAT (RXDATA channel)
- response of snoop operation again on WDAT (TXDATA channel) from snooped master

Field where data structure name Type

BE payload {im_generic_payload be unsigned char*
Data payload {im_generic_payload chi::data data unsigned char*
QoS extension [chi::common qos uint32_t
SrclD extension [chi::common src_id uint16_t
ITxnID extension [chi::common txn_id uint16_t
CCID extension [chi::data cc_id uint8_t
DataCheck extension [chi::data data_check uint64_t
DatalD extension [chi::data data_id uint8_t
DataPull extension [chi::data data_pull uint8_t
Datasource extension [chi::data data_source uint8_t
DBID extension (chi::data db_id uint8_t
FwdState extension [chi::data fwd_state uint8_t
HomeNID extension [chi::data home_n_id uint16_t
Opcode extension [chi::data opcode dat_opcode_e
Poison extension [chi::data poison uint8_t
Resp extension [chi::data resp dat_resptype_e
RespErr extension [chi::data resp_err uint8_t
RSVDC extension [chi::data rsvdc uint32_t

4 TLM-2.0 Transaction flow diagram

The following flow-diagram illustrates the usage of TLM-2.0 protocol for two scenarios of
transaction, one Snoop-less ‘ReadNoSnp’ and another with Snoop WriteOnce. Each
transaction shows the OpCode, type of Transaction Object used and Channel on which it is
sent.

4.1 Transaction Flow without Snoop

RN-0 HN SN-0

ReadNoSnp
- Request obj — ReadNoSnp
- REQ channel T _Request obj
- REQ channel —_—
/
CompData
-Data object
«— -RDAT Channel
CompData _—
-Data object

44— -RDAT Channel

CompAck

-Response obj T
-SNP channel

Figure 3 Snoop-less transaction

4.2 Transaction Flow for Snoop-based transaction

RN-0

2

WriteUniquePtl
- Request obj
- REQ channel

DBIDResp
- Response obj
- CRSP channel

NCBWrData
- Data obj
- WDAT channel

Comp
- Response obj
- CRSP channel

HN RN-1

SnpCleanlnvalid
— - Snoop obj
- SNP channel —>

/

SnpRespData -
1. Snoop object
-SRSP Channel
-SNP socket

2. Data object
-WDAT Channel

Data
Merge

\

—

— |~

\

Figure 4 Snoop-based transaction

WriteNoSnp
- Request obj
- REQ channel

—

CompDBIDResp
- Response obj _
- CRSP channel

NCBWrData
- Data obj
- WDAT channel

—

SN-0

5 DMI and Debug Transport Communication
The direct memory interface (DMI) and debug transport interface are specialized interfaces
distinct from the transport interface, providing direct access and debug access to a resource
owned by a target. DMl is intended to accelerate regular memory transactions in a loosely-timed
simulation, whereas the debug transport interface is for debug access free of the delays or side-
effects associated with regular transactions. For more details on debug transport and DMI please
refer to the ‘OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL .

6 Blocking Communication

Blocking communication is mostly used in loosely-timed (LT) models or programmer view use
cases. Here the communication is abstracted and described by 2 timing points: the start and the
end of the transaction. CHI sockets use the b_transport interface as described in [5] the TLM-
2.0 LRM. For more details on LT modeling, please refer to the ‘OSCI TLM-2.0 LANGUAGE
REFERENCE MANUAL'.

6.1 b_transport and b_snoop Call Sequence
The call sequences for blocking transactions are the same than for the generic protocol one.

The backward socket interface is been extended to allow for blocking snoop accesses. The
semantics of the b_snoop access is the same as the b_transport call but in backward direction.

1

7 Non-blocking Communication

In the non-blocking communication protocol, each transaction has multiple timing points. This way, the
timely description is of higher accuracy and suitable e.g. for architectural exploration.

Each socket interaction is characterized by the generic payload, the phase time points and the direction
of communication (forward or backward interface). Therefore, the CHI channels can be identified and it
is possible to route them thru the same socket.

7.1 Extended Phases

The non-blocking transactions of the CHI TLM2.0 implementation use up to 7 additional phases:

BEGIN_PARTIAL_DATA

Denoting the start of transaction of multiple data packets
END_PARTIAL_DATA

Denoting the end of transaction of multiple data packets
BEGIN_DATA

Denoting the start of the last data packet in the transaction
END_DATA

Denoting the end of the last data packet in the transaction
ACK

Denoting the acknowledgement transfer

Following diagram shows the protocol and phase transitions in details:

BEGIN_REQ
Request
END_REQ

| =
" fa) b3 <
{ 4 | = <
i = - <€ .AIH
" [© < 9 e a8
— T £ P 8 P E z a o

{ a = [} =4
! N_ | w w
" = =) @
i] z
| & w

e "

e "

=)

| o 1

! o)

_ a 2 @ "

| @ c w]

Y | > S > o ;

— P = a | f

{ = 3 =)

! 0] 1

I w o w 1

{ @]

PN "

Y

A 4

ACK

IDLE

Figure 5: CHI TLM2 protocol phases and transitions

7.2 Transaction to channel, socket and phase mapping

The following table shows the TLM transactions on backward and forward calls, extensions
and phases used for doing a transaction call from Requestor to Completer.

S.No. | Transaction From | Channel | Opcodes Extension path Phase on calling Return Phase Status on
-To- return
1 | Non-snoopable RNto | REQ ReadNoSnp chi_ctrl_extension Forward BEGIN_REQ END_REQ TLM_UPDATED
read/write request HN
BEGIN_REQ TLM_ACCEPTED
2 Snoopable read RN REQ ReadOnce, chi_ctrl_extension Backward BEGIN_REQ END_REQ TLM_UPDATED
request to ReadShared
HN etc
BEGIN_REQ TLM_ACCEPTED
3 | Snoop request HNto | SNP Snp[*]Fwd chi_snp_extension Backward BEGIN_REQ END_REQ TLM_UPDATED
RN
BEGIN_REQ TLM_ACCEPTED
4 Snoop data response RN to WDAT SnpRespData chi_data_extension Forward BEGIN_PARTIAL_DATA END_PARTIAL_DATA TLM_UPDATED
HN BEGIN_DATA END_DATA
BEGIN_PARTIAL_DATA | TLM_ACCEPTED
BEGIN_DATA
5 | Snoop response RN to SRSP SnpResp chi_snp_extension Forward BEGIN_RESP END_RESP TLM_UPDATED
HN
BEGIN_RESP TLM_ACCEPTED
6 | Write data RN to WDAT WriteCleanFull | chi_data_extension Forward BEGIN_PARTIAL_DATA | END_PARTIAL_DATA TLM_UPDATED
HN
BEGIN_PARTIAL_DATA | TLM_ACCEPTED
7 | Read data HN to RDAT ReadClean chi_data_extension Backward BEGIN_PARTIAL_DATA | END_PARTIAL_DATA TLM_UPDATED
RN
SN to BEGIN_PARTIAL_DATA | TLM_ACCEPTED
HN
8 | Read/write/data-less HNto | CRSP CompAck chi_ctrl_extension Backward ACK ACK TLM_UPDATED
response RN
9 Data-less transactions RN to REQ Evict chi_ctrl_extension Forward BEGIN_REQ END_REQ TLM_UPDATED
(Maintenance) i.e. HN
Clean, Evict, Make etc
request
BEGIN_RESP TLM_ACCEPTED

e Note that when there is more than one data packet to be send the BEGIN_PARTIAL_DATA and

END_PARTIAL_DATA is used. BEGIN_DATA and END_DATA phases mark the last data packet.

e |[f there is no delay between arrival of request BEGIN_REQ and acceptance of the request, then the

phase can be updated to END_REQ while returning the call.

e |[f delay is there in arrival of request i.e. ‘BEGIN_REQ’ and acceptance of the same, then the non-
blocking call can be returned immediately with ‘TLM_ACCEPTED’ as response. The request
acceptor can then make another backward non-blocking call with phase set to ‘END_REQ'.

e Similar approach, as BEGIN_REQ and END_REQ given above, can also be used for all the other

non-blocking calls. Hence above table has 2 entries for each non-blocking call.

8 Implementation Guideline
The following sections describe an implementation of the specification. As such it is not part of the
specification and may be subject to change in the course of implementation.

8.1 Payload Extension
This section is going to describe the extensions provided by the CHI TLM2.0 transactor package.

8.1.2 Structs for extensions

As outlined in section 3, there are six data structures representing the attributes of a CHI transaction.
Along with the data members already described, they provide some utility functions to partially decode
the signals and their meaning. These are:

struct common {

public:
void reset();
void set txn id(unsigned int);
unsigned int get txn id() const;

void set src id(unsigned int);
unsigned int get src id() const;

void set gos(uint8 t gos);
unsigned int get gos() const;
};
The ‘common’ structure has fields common to all requests and response, namely txn_id, src_id and qos.

struct request {
void set tgt id(uint8 t);
uint8 t get tgt id() const;

void set lp id(uint8 t);
uint8 t get 1lp id() const;

void set return txn id(uint8 t);
uint8 t get return txn id() const;

void set stash 1lp id(uint8 t);
uint8 t get stash 1p id() const;

void set size(uint8 t);
uint8 t get size() const;

void set max flit(uint8 t data id);
uint8 t get max flit() const;

void set mem attr(uint8 t);
uint8 t get mem attr() const;

void set pcrd type(uint8 t);
uint8 t get pcrd type() const;

void set endian(bool);
bool is endian() const;

void set order(uint8 t);
uint8 t get order() const;

void set trace tag(bool tg = true);
bool is trace tag() const;

1¢

void set opcode(chi::req optype e op);
chi::req optype e get opcode() const;

void set return n id(uintl6 t);
uintl6 t get return n id() const;

void set stash n id(uintl6 t);
uintl6 t get stash n id() const;

void set stash n id valid(bool = true);
bool is stash n id valid() const;

void set stash 1lp id valid(bool = true);
bool is stash lp id valid() const;

void set non secure(bool = true);
bool is non_secure() const;

void set exp comp ack(bool = true);
bool is_exp comp ack() const;

void set allow retry(bool = true);
bool is allow retry() const;

void set snp attr(bool = true);
bool is snp_ attr() const;

void set excl(bool = true);
bool is_excl() const;

void set snoop me(bool = true);
bool is snoop me() const;

void set likely shared(bool = true);
bool is likely shared() const;

void set rsvdc(uint32 t);
uint32 t get rsvdc() const; // Reserved for customer use.

The ‘request’ structure is used to capture signals/fields corresponding to transaction request
started by RN and handled by HN, or requested by HN and completed by SN. These fields are as give in
above table xxx.

struct snp_ request {
void set fwd txn id(uint8 t);
uint8 t get fwd txn id() const;

void set stash 1lp id(uint8 t);
uint8 t get stash 1p id() const;

void set stash 1lp id valid(bool = true);
bool is stash 1lp id valid() const;

void set vm id ext(uint8 t);
uint8 t get vm id ext() const;

void set opcode(snp_ optype e opcode) ;
snp_optype e get opcode() const;

void set fwd n id(uintl6 t);
uintl6 t get fwd n id() const;

void set non secure(bool = true); // NS bit
bool is non_secure() const; // NS bit

void set do not goto sd(bool = true);

1!

bool is do not goto sd() const;

void set do not data pull(bool = true);
bool is do not data pull() const;

void set ret to src(bool);
bool is ret to src() const;

void set trace tag(bool = true);
bool is trace tag() const;

Y

The ‘snp_request’ structure is used to capture signals/fields corresponding to snoop transaction request
started by HN and handled by RN, as give in above table xxx.

struct lcredit {
lcredit () = default;
void set lcredits(int ncredits) { lcredits = ncredits; }
void decrement lcredits() { lcredits--; }
unsigned get lcredits() { return lcredits; }

private:
int lcredits{0};
};

The struct to maintain the L-Credit information.

struct data {
void set db id(uint8 t);
uint8 t get db id() const;

void set opcode(dat optype e opcode) ;
dat optype e get opcode() const;

void set resp err(uint8 t);
uint8 t get resp err() const;

void set resp(dat resptype e);
dat resptype e get resp() const;

void set fwd state(uint8 t);
uint8 t get fwd state() const;

void set data pull(uint8 t);
uint8 t get data pull() const;

void set data source(uint8 t);
uint8 t get data source() const;

void set cc id(uint8 t);
uint8 t get cc id() const;

void set data id(uint8 t);
uint8 t get data id() const;

void set poison(uint8 t);
uint8 t get poison() const;

void set tgt id(uintl6 t);
uintl6 t get tgt id() const;

void set home n id(uintl6 t);
uintl6 t get home n id() const;

1¢

void set rsvdc(uint32 t);
uint32 t get rsvdc() const;

void set data check(uint64 t);
uint64 t get data check() const;

void set trace tag(bool);
bool is trace tag() const;

};

The data structure to be used in extension of payload for providing data in Request of Write & Read
operations on WDAT and RDAT channels respectively or in Response of Snoop operation on WDAT
channel.

struct response {
void set db id(uint8 t);
uint8 t get db id() const;

void set pcrd type(uint8 t);
uint8 t get pcrd type() const;

void set opcode(rsp_optype e opcode);
rsp_optype e get opcode() const;

void set resp err(uint8 t);
uint8 t get resp err() const;

void set resp(rsp resptype e);
rsp_resptype e get resp() const;

void set fwd state(uint8 t);
uint8 t get fwd state() const;

void set data pull(bool);
bool get data pull() const;

void set tgt id(uintl6 t);
uintl6 t get tgt id() const;

void set trace tag(bool);
bool is trace tag() const;

};

The ‘response’ structure is used to capture signals/fields corresponding to all types of responses, namely
(a) transaction response on CRSP channel, sent by SN to HN or HN to RN, and
(b) snoop response on SRSP channel, sent by RN to HN

8.1.2 TLM extensions

The above structures are combined in corresponding payload extensions. There is one extension for each
structure. This makes it modular, so that
- each Requester can create extension object as necessary and add to the payload, and make the
blocking/non-blocking call for the transaction
- the receiver of the blocking/non-blocking call can use this extension to do the transaction.

For each of these structures’ ‘request’, ‘snp_request’, ‘data’ and ‘response’, the following extensions are
defined.

TLM extension for ‘request’ and ‘response’:
struct chi ctrl extension : public tlm::tlm extension<chi ctrl extension> ({

10

void set txn id(unsigned int id) { cmn.set txn id(id); }
unsigned int get txn id() const { return cmn.get txn id(); }

void set src id(unsigned int id) { cmn.set src id(id); }
unsigned int get src id() const { return cmn.get src_ id(); }

void set gos(uint8 t gos) { cmn.set gos(gos); }
unsigned int get gos() const { return cmn.get gos(); }

common cmn;
request req;
response resp;

TLM extension for ‘snp_request’ and according ‘response’
struct chi snp extension : public tlm::tlm extension<chi snp extension> {

void set txn id(unsigned int id) { cmn.set txn id(id); }
unsigned int get txn id() const { return cmn.get txn id(); }

void set src id(unsigned int id) { cmn.set src id(id); }
unsigned int get src id() const { return cmn.get src_ id(); }

void set gos(uint8 t gos) { cmn.set gos(gos); }
unsigned int get gos() const { return cmn.get gos(); }

common cmn;
snp_request req;
response resp;

Y

TLM extension for L-Credit flow control

struct chi credit extension : public

tlm::tlm extension<chi credit extension>, public lcredit {
chi credit extension() = default;
tlm::tlm extension base* clone() const;
void copy from(tlm::tlm extension base consté& ext);

};

TLM extension for ‘data’

struct chi data extension : public tlm::tlm extension<chi data extension> {

void set txn id(unsigned int id) { cmn.set txn id(id); }
unsigned int get txn id() const { return cmn.get txn id(); }

void set src id(unsigned int id) { cmn.set src id(id); }
unsigned int get src id() const { return cmn.get src id(); }

void set gos(uint8 t gos) { cmn.set gos(gos); }
unsigned int get gos() const { return cmn.get gos(); }

common cmn{};
data dat{};
Y

Consideration for extensions

Instead of considering all the structures in one extension, as in case of AXlI TLM, it is

recommended to use one extension for each structure. Since, there are many combinations of

data-based, snoop-based, snoop-less and data-less (maintenance) transaction, it is better to
1¢

make an extension for the current opcode, and send that extension with the payload.
Let us take as example a snoop based Read operation.
1. RN will add ‘chi_req_extension’ to payload and make the nb_transport_fw(..) call
2. In order to snoop another RN, the HN will add ‘chi_snp_req_extension’ to the payload.
Now, payload will have two extensions.
3. After response from the snooped RN, HN will remove the ‘chi_snp_req_extension’ from

the payload.
4. After getting response from HN, the initiator will process the response and remove the

‘chi_req_extension’ from the payload.

In such a scenario, if we use one extension having all the structures, since each of the structure has many
fields, the extension structure will become very big and many of the fields may be un-used there. Also,
since the src_id and tgt_id is common to each of the structure, for each hop of transaction, we need to

retain these values.

8.2 Phases Declarations and Protocol traits
According to the specified protocol modeling 4 additional non-ignorable phases need to be
defined:

// additional CHI phases
DECLARE_EXTENDED_PHASE(BEGIN_PARTIAL_DATA);
DECLARE_EXTENDED_PHASE(END_PARTIAL_DATA);
DECLARE_EXTENDED_PHASE(BEGIN_DATA);
DECLARE_EXTENDED_PHASE(END_DATA);
DECLARE_EXTENDED_PHASE(ACK);

Since these are non-ignorable, a specific protocol trait needs to be defined to comply with the TLM2.0
LRM:

using chi_payload = tIm::tlIm_generic_payload;
using chi_phase = tIm::tim_phase;
// chi protocol traits class
struct chi_protocol_types {
typedef chi_payload tim_payload_type;
typedef chi_phase tim_phase_type;

2(

8.3 Socket Interfaces and Sockets

The standard TLM interfaces are re-used from the tIm base protocol specification:

Socket Interfaces

// the forward interface
template <typename TYPES = chi::chi_protocol_types>
using chi_fw_transport_if = tim::tIm_fw_transport_if<TYPES>;

// The backward interface:
template <typename TYPES = chi::chi_protocol_types>
using chi_bw_transport_if = tim::tIm_bw_transport_if<TYPES>;

Sockets
Based on the definitions so far, the initiator and target socket are declared as follows:

1. chi_initiator_socket

This initiator socket is present on
a) RN for doing transaction request to HN, and handling completer response from HN.
b) HN for transaction request to SN

template <unsigned int BUSWIDTH = 32, typename TYPES = chi protocol types, int N = 1,
sc_core::sc_port policy POL = sc_core::SC ONE OR MORE BOUND>
struct chi_initiator_ socket
: public tlm::tlm base initiator socket<BUSWIDTH, chi_ fw transport if<TYPES>,
chi bw transport if<TYPES>, N, POL> {
//! base type alias
using base type = tlm::tlm base initiator socket<BUSWIDTH, chi_ fw_transport if<TYPES>,
chi bw transport if<TYPES>, N, POL>;
/**
* @brief default constructor using a generated instance name
*/
chi_initiator_socket()
: base type() {}
/**
* @brief constructor with instance name
* @param name
*/
explicit chi initiator socket(const char* name)
: base type(name) {}
/**
* @brief get the kind of this sc object
* @return the kind string
*/
const char* kind() const override { return "chi trx initiator socket'"; }
#if SYSTEMC VERSION >= 20181013 // not the right version but we assume TLM is always bundled
with SystemC
/**
* @brief get the type of protocol
* @return the kind typeid
*/
sc_core::sc_type index get protocol types() const override { return typeid(TYPES); }
#endif
}i

2. chi_trx_target_socket
This socket inside Target is corresponding to the chi_initiator_socket

template <unsigned int BUSWIDTH = 32, typename TYPES = chi protocol types, int N = 1,
sc_core::sc_port policy POL = sc_core::SC_ONE_OR_MORE_BOUND>
struct chi target socket : public tlm::tlm base target socket<BUSWIDTH,
chi fw transport if<TYPES>, chi bw transport if<TYPES>, N, POL> {
//! base type alias
using base type = tlm::tlm base target socket<BUSWIDTH, chi fw transport if<TYPES>,
chi bw transport if<TYPES>, N, POL>;
/**
* @brief default constructor using a generated instance name
*/
chi target socket()
base_type() {}
/**
* @brief constructor with instance name
* @param name
*/
explicit chi target socket(const char* name)
base type(name) {}
/**
* @brief get the kind of this sc object
* @return the kind string

*/

const char* kind() const override { return "chi trx target socket'"; }
#if SYSTEMC VERSION >= 20181013

/**

* @brief get the type of protocol

* @return the kind typeid

*/

sc_core::sc_type index get protocol types() const override { return typeid(TYPES); }
#endif
}i

