TLM2.0 compliant AXI Transactor Specification

Eyck Jentzsch

Contents

1 Preface
1.1 About this Specification
1.2 References

2 Introduction

3 Channel Signal Mapping
3.1 Writechannels
3.1.1 Write Address (AW)
312 WriteData (W)
313 Write Response (B)
32 Readchannels
321 Readaddress (AR)
322 Readdata(R)
33 Snoopchannels
3.31 Snoopaddress (AC)
3.3.2 Snoopresponse (CR)
333 Snoopdata (CD)

4 DMI and Debug Transport Communication

5 Blocking Communication
5.1 b_transport and b_snoop Call Sequence

6 Non-blocking Communication

6.1 Extended Phases

6.2 Permitted Phase Transitions
6.2.1 Write Access
6.2.2 Read Access
6.2.3 Snoop ACCeSS

6.3 nb_transport Call Sequences for basic AXI/ACE Protocol Transactions

6.4 nb_transport Call Sequence for ACE Transaction Groups

6.5 nb_transport Transaction and Clock Boundaries

6.6 Non-ignorable Phases and Protocol Traits

7 Implementation Guideline
7.1 Payload Extension
7.2 Phases Declarations and Protocol traits
7.3 Socket Interfaces and Sockets

[E

NN

oo oD OWOLOW N

(&,

o O

8 Recommended Additions 18

8.1 Convenience Layer 18
8.2 Transaction Tracing 18
8.3 Protocol Checker 19

1 Preface

1.1 About this Specification

This specification details the representation of the AXI and ACE protocol in an TLM2.0 compliant
implementation. The definition of the protocol adheres to 'AMBAR) AXI™ and ACE™ Protocol
Specification’ (see section 1.2). The specification focuses on AXI4 and ACE as long as nothing
else is explicitly noted.

It is assumed that the reader is familiar with the TLM-2.0 language reference manual (see section
1.2) version TLM 2.0.1 and has some basic experience with TLM modeling. Basic understanding
of the AXI and ACE protocol is beneficial.

1.2 References

This manual focuses on the extension of TLM2.0 to model the AMBA AXI and ACE protocol at
loosly and approximately timed accuracy. For more details on the protocol and semantics, see
the following manuals and specifications:

e AMBA® AXI™ and ACE™ Protocol Specification version 2, 22 February 2013
e |EEE Std. 1666 TLM-2.0 Language Reference Manual

2 Introduction

This document specifies the way sockets communicate to each other while modeling properties
of the AXI protocol. As such all channels of an AXI interface are represented by a single TLM
socket. These channels are:

Write address (AW)
Write data (W)
Write response (B)
Read address (AR)
Read data (R)
Snoop address (AC)
Snoop response (CR)
Snoop data (CD)

The specification describes the way sockets exchange information not how it is to be implemented.

3 Channel Signal Mapping

The following table lists the mapping of AXI/ACE signals to either the payload, its extensions or
phases.

Phases are defined for the non-blocking protocol only. Wherever possible the AXI
protocol is mapped to the generic protocol phases to ease interoperability with the
TLMZ2.0 standard. For more information about phases see section 6.6.

3.1 Write channels

3.1.1 Write Address (AW)

AXI/ACE signal where data structure name type
AWID extension axi::common ID int
AWADDR payload tIm::generic payload address uint64 t
AWLEN extension axi:request length uint8 t
AWSIZE extension axi:request size uint3_t
AWBURST extension axi:irequest burst burst e
AWLOCK extension axi::request lock uin4
AWCACHE extension axi:request cache cache e
AWPROT extension axi:irequest prot uint3_t
AWQOS extension axi::request qos uintd t
AWREGION extension axi::request region uint4 t
AWUSER extension axi::common user uint64 t
AWVALID phase BEGIN REQ

AWREADY phase END REQ

AWDOMAIN extension axi::request domain domain e
AWSNOOP extension axi::request snoop snoop e
AWBAR extension axi::request barrier barrier e
AWUNIQUE extension axi::request unique bool

3.1.2 Write Data (W)

AXI/ACE signal where data structure name type
WID extension axi::common ID int
WDATA payload tIm::generic_payload data/len
WSTRB payload tim::generic_payload byte enable
WLAST phase BEGIN REQ
WUSER extension axi::common user uinto4 t
WVALID phase BEGIN PARTIAL REQ

BEGIN REQ
WREADY phase END PARTIAL REQ

END_ REQ

3.1.3 Write Response (B)

AXI/ACE signal where data structure name type
BID extension axi::common |ID int
BRESP extension axi:response resp resp e
BUSER extension axi::common user uint64 t
BVALID phase BEGIN _RESP
BREADY phase END RESP
WACK phase/extension ACK/axi::response ack bool
3.2 Read channels
3.2.1 Read address (AR)
AXI/ACE signal where data structure name type
ARID extension axiz:common ID int
ARADDR payload tim::generic_payload address uint64 t
ARLEN extension axi::request len uint8 t
ARSIZE extension axi:request size uint3_t
ARBURST extension axi::request burst burst e
ARLOCK extension axi::request lock bool
ARCACHE extension axi::request cache cache e
ARPROT extension axi::request prot uint3_t
ARQOS extension axi::request qos uint4 _t
ARREGION extension axi::request region uint4 t
ARUSER extension axi::common user uint64 _t
ARVALID phase BEGIN REQ
ARREADY phase END_ REQ
ARDOMAIN extension axi::request domain domain e
ARSNOOP extension axi::request snoop snoop e
ARBAR extension axi::request barrier barrier e
3.2.2 Read data (R)
AXI/ACE signal where data structure name type
RID extension axi::common ID int
RDATA payload tlm::generic_payload data/len
RRESP extension axi:response resp resp_e
RLAST phase BEGIN _RESP
RUSER extension axi::common user uint64 t
RVALID phase BEGIN PARTIAL RESP
BEGIN _RESP
RREADY phase END PARTIAL RESP
END _RESP
RACK phase/extension ACK/axi::response ack bool

3.3 Snoop channels

3.3.1 Snoop address (AC)

AXI/ACE signal where data structure name type
ACVALID phase BEGIN REQ

ACREADY phase END REQ

ACADDR payload tIm::generic_payload address uint64 t
ACSNOOP extension axi::request snoop snoop e
ACPROT extension axi::request prot prot e

3.3.2 Snoop response (CR)

AXI/ACE signal where data structure name type
CRVALID phase BEGIN RESP
CRREADY phase END _RESP
CRRESP extension axi:response resp resp_e

3.3.3 Snoop data (CD)

AXI/ACE signal where data structure name type
CDVALID phase BEGIN PARTIAL RESP
BEGIN RESP
CDREADY phase END_ PARTIAL RESP
END RESP
CDDATA payload tlm::generic_payload data/len
CDLAST phase BEGIN RESP

4 DMI and Debug Transport Communication

The direct memory interface (DMI) and debug transport interface are specialized interfaces
distinct from the transport interface, providing direct access and debug access to a resources
owned by a target. DMI is intended to accelerate regular memory transactions in a loosely-timed
simulation, whereas the debug transport interface is for debug access free of the delays or
side-effects associated with regular transactions. For more details on debug transport and DMI
please refer to the ‘OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL'.

5 Blocking Communication

Blocking communication is mostly used in loosely-timed (LT) models or programmer view use
cases. Here the communication is abstracted and described by 2 timing points: the start and
the end of the transaction. AXI/ACE sockets use the b _transport fw interface as described in

the TLM-2.0 LRM. Additionally they are required to implement the b_transport bw interface

which allows to model snoop access at this high abstraction. For more details on LT modeling
please refer to the ‘OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL'.

5.1 b_transport and b_snoop Call Sequence

The call sequences for blocking transactions are the same than for the generic protocol one. The
backward socket interface is been extended to allow for blocking snoop accesses. The semantics
of the b_snoop access are the same than the b_transport call but in backward direction.

6 Non-blocking Communication

In the non-blocking communication protocol each transaction has multiple timing points. This
way the timely description is of higher accuracy and suitable e.g. for architectural exploration.

Each socket interaction is characterized by the generic payload, the phase time points and the
direction of communication (forward or backward interface). Therefore the AXI channels can be
identified and it is possible to route them thru the same socket.

6.1 Extended Phases

The non-blocking transactions of the AXI TLM2.0 implementation use up to 4 additional phases:
e BEGIN PARTIAL REQ
denoting the start of a burst write data transfer beat
e END PARTIAL REQ
denoting the end of a burst write data transfer beat
e BEGIN PARTIAL RESP
denoting the start of a burst read data transfer beat
e END PARTIAL RESP

denoting the end of a burst read data transfer beat

6.2 Permitted Phase Transitions

Despite the TLM2.0 LRM's base protocol a path from an initiator to a target may convey up
to 3 different phases concurrently for read, write, and snoop accesses (since snoop access is
modeled as a read access from target to initiator there is a differentiation).

6.2.1 Write Access

Previous Calling Phase argument on Phase argument on Status on Next
state path call return return state
idle fw BEGIN PARTIAL REQ - Accepted wdata

Previous Calling Phase argument on Phase argument on Status on Next
state path call return return state
idle fw BEGIN PARTIAL REQ END_PARTIAL REQUpdated “wdata
wdata bw END PARTIAL REQ - Accepted “wdata
“wdata fw BEGIN PARTIAL REQ - Accepted wdata
~wdata fw BEGIN PARTIAL REQ END_PARTIAL REQUpdated ~wdata
wdata bw END_ PARTIAL REQ - Accepted “wdata
“wdata fw BEGIN REQ - Accepted wdatal
“wdata fw BEGIN REQ END_ REQ Updated “wdatal
wdatal bw END REQ - Accepted ~wdatal
“wdatal bw BEGIN _RESP - Accepted wresp
“wdatal bw BEGIN RESP END RESP Updated idle
wresp fw END RESP - Accepted idle
“wdatal bw BEGIN RESP - Accepted wresp
“wdatal bw BEGIN RESP END RESP Updated “wresp
wresp fw END RESP - Accepted ~wresp
~wresp fw ACK - Accepted idle
6.2.2 Read Access
Previous Calling Phase argument on Phase argument on Status on
state path call return return Next state
idle fw BEGIN REQ - Accepted raddr
idle fw BEGIN REQ END REQ Updated “raddr
raddr bw END REQ - Accepted “raddr
“raddr bw BEGIN _PARTIAL RESP - Accepted rresp
“raddr bw BEGIN PARTIAL RESPEND PARTIAL RESRJpdated “rresp
rresp fw END_ PARTIAL RESP - Accepted “rresp
“rresp bw BEGIN PARTIAL RESP - Accepted rresp
“rresp bw BEGIN PARTIAL RESPEND PARTIAL RESRJpdated “rresp
rresp fw END_ PARTIAL RESP - Accepted “rresp
“rresp bw BEGIN RESP - Accepted rrespl
“rresp bw BEGIN RESP END RESP Updated idle
rrespl fw END_ RESP - Accepted idle
“rresp bw BEGIN RESP - Accepted rrespl
“rresp bw BEGIN RESP END RESP Updated “rrespl
rrespl fw END RESP - Accepted “rrespl
“rrespl fw ACK - Accepted idle
6.2.3 Snoop Access
Previous Calling Phase argument on Phase argument on Status on
state path call return return Next state
idle bw BEGIN REQ - Accepted caddr
idle bw BEGIN REQ END_ REQ Updated “caddr
caddr fw END REQ - Accepted ~caddr

Previous Calling Phase argument on Phase argument on Status on

state path call return return Next state
~caddr fw BEGIN _PARTIAL RESP - Accepted cresp
“caddr fw BEGIN PARTIAL RESPEND PARTIAL RESRJpdated “cresp
cresp bw END PARTIAL RESP - Accepted “cresp
“cresp fw BEGIN PARTIAL RESP - Accepted cresp
~cresp fw BEGIN PARTIAL RESPEND PARTIAL RESRJpdated “cresp
cresp bw END_PARTIAL RESP - Accepted “cresp
“cresp fw BEGIN RESP - Accepted crespl
“cresp fw BEGIN RESP END RESP Updated idle

crespl bw END RESP - Accepted idle

6.3 nb_transport Call Sequences for basic AXI/ACE Protocol Transactions

The figure Figure 1 below shows the protocol sequence for an AXI read and write access as well
as an ACE snoop access. The snoop sequence is the same than the AXI read but with flipped
forward /backward roles.

The transactions on the address and response channels are mapped to BEGIN_REQ/END_REQ and
BEGIN_RESP/END_RESP of the base protocol. The AXI TLM2 protocol rules are an amendment
to those described in the TLM2.0 LRM. The most important changes are:

e Premature finish of accesses (1-phase access) is not allowed. A return status of
TLM_COMPLETED shall never occur along with the END_RESP phase.

e Partial phases (partial request denoted by BEGIN_PARTIAL_REQ/END_PARTIAL_REQ and
partial response denoted by BEGIN_PARTIAL_RESP/END_PARTIAL_RESP) are allowed to
occur 0 to many times. In any case the request and response phase needs to be finished
with a non-partial reqest/reponse signaling.

e Partial request and response phases of different accesses may be interleaved.

e For the AXI4 protocol interleaved partial request phases are not allowed.

6.4 nb_transport Call Sequence for ACE Transaction Groups

The AXI™ and ACE™ Protocol Specification defines transaction groups:

e Read transactions
e Clean transactions
o Make transactions
e Write transactions
e Evict transactions
Read and Write transactions behave as in section 6.3 described. Clean, Make, and Read barrier
transactions are variants of the read transaction where the returned data is ignored. Evict and
Write barrier transactions are modeled as write transactions without a data transfer. Hence they
will never have a partial request phase (denoted by BEGIN_PARTIAL_REQ/END_PARTIAL_REQ

signaling).

WRITE

REQ

BEGIN_PARTIAL_REQ
[fw]

/

WADDR WDATA

N

1

i | END_PARTIAL_REQ
[[fw returnlbw]

1

L

const BEGIN_REQ
(fw]
|

L

WADDR WDATAL

N/

END_REQ
[fw returnlbw]

RESP

BEGIN_RESP
[bw]

i

WRESP

i

END_RESP
[bw returnlfw]

/

ACK
(fw]

SNOOP
REQ
BEGIN_REQ
[bw]
READ
REQ

Y
BEG[[}““;]REQ CADDR

l '

RADDR END_REQ

[bw returnifw]

l

RESP
END_REQ
[fw returnlbw |

RESP

BEGIN_PARTIAL_RESP
fw]

L
CRESP CDATA

N/

END_PARTIAL_RESP
[fw returnlbw|

\

BEGIN_PARTIAL_RESP
[bw]

/

RDATA RRESP

N/

END_PARTIAL_RESP

BEGIN RESP
[bw returnlfw] [fw]
BEGIN_RESP CRESPL CDATA
[bw]
RDATA RRESPL END_RESP

[fw returnlbw]

Ny

END_RESP
[bw returnlfw]

/

ACK
[fw]

Figure 1: AXI pr(j)tocol sequences

6.5 nb_transport Transaction and Clock Boundaries

Figure 2 shows by example the AXI single read and write accesses and how they map to clock
boundaries. Burst reads and writes comprise additional clock cycles for the additional read or
write data phases denoted by the BEGIN_PARTIAL_*/END_PARTIAL_* timing points.

This scheme allows to represent the AXI timing quite closely and it might be as fast as one
transfer per clock.

6.6 Non-ignorable Phases and Protocol Traits

The specified AXI protocol defines two additional non-ignorable phase denoted by:
BEGIN_PARTIAL_REQ/END_PARTIAL_REQ for the partial request phase and BEGIN_PARTIAL_RESP/
END_PARTIAL_RESP for the partial response phase. These phases designate data transfers on
the AXI channels.

As the AXI protocol defines separate channels for read and write the protocol allows up to 2
concurrent request phases at the same time on the forward interface: one for a read and one for
the read channel. The distinction is made based on the command of the generic payload. The
same applies to the response phase.

In case of using the ACE protocol there is an additional request phase at the backward interface
and a response phase on the forward interface allowed representing the snoop accesses.

Since the aforementioned phases are non-ignorable phases a new protocol trait shall be defined.

7 Implementation Guideline

The following sections describe an implementation of the specification. As such it is not part of
the specification and may be subject to change in the course of implementation.

7.1 Payload Extension

This section is going to describe the extensions provided by the AXI/ACE TLM2.0 transactor
package. As outlined in section 3 there are three data structures representing the attributes of
an AXI/ACE transaction. Along with the data members already described they provide some
utility functions to partially decode the signals and their meaning. These are:

struct common {
common() = default;
void reset();

enum class id_type {
CTRL, DATA, RESP
33

void set_id(id_type chnl, unsigned int);
unsigned int get_id(id_type chnl) ;

10

read/write

CLK

CLK

write burst

CLK

CLK

CLK

read burst
CLK

CLK

CLK

_|e Nb_transport fw/TLM_UPDATE:END_PARTIAL_REQ

. nb_transport_bw/TLM_UPDATED:END_RESP

nb_transport_fw:END_RESP

nb_transport_fw/BEGIN_PARTIAL_REQ

nb_transport bw/END_PARTIAL_REQ

nb_transport_fw/BEGIN_REQ

nb_transport fw/TLM_UPDATE:END REQ
nb_transport_ bw/END_REQ

nb_transport_bw/BEGIN_RESP

Initiator Target
nb_transport_fw/BEGIN_REQ oL
- nb_transport fw/TLM_UPDATE:END_REQ 4_/::
nb_transport bw/END_REQ
Ll nb_transport bw/BEGIN_RESP L
:"\ nb_transport bw/TLM UPDATED:END RESP >

nb_transport_fw:END_RESP >

nb_transport_fw/BEGIN_REQ

- nb_transport fw/TLM_UPDATE:END REQ
nb_transport_bw/END_REQ

nb_transport bw/BEGIN_PARTIAL_RESP

w |Nb_transport_ bw/TLM_UPDATED:END_PARTIAL RESE___

nb_transport_fw:END_PARTIAL_ RESP

nb_transport bw/BEGIN_RESP

|

nb_transport bw/TLM UPDATED:END RESP
nb_transport_fw:END_RESP

-

Figure 2: AXI accesses w. clock boundaries

11

void set_user(id_type chnl, unsigned int);
unsigned int get_user(id_type chnl) ;
s

The request is defined as:

struct request {
void reset();

void set_length(uint8_t);
uint8_t get_length() ;

void set_size(uint8_t);
uint8_t get_size() ;

void set_burst(burst_e);
burst_e get_burst() ;

void set_prot(uint8_t);
uint8_t get_prot() ;

void set_privileged(bool = true);
bool is_privileged() ;

void set_non_secure(bool = true);
bool is_non_secure() g

void set_instruction(bool = true);
bool is_instruction() g

void set_cache(uint8_t);
uint8_t get_cache() 3

void set_qgos(uint8_t);
uint8_t get_qos() ;

void set_region(uint8_t);
uint8_t get_region() 5
15

Since the AxCACHE and AxLOCK signals have different interpretation the utility functions are
moved into derived classes:

struct axi3: public request {
axi3& operator=(axi3&) ;

void set_exclusive(bool = true);
bool is_exclusive() ;

12

void set_locked(bool = true);
bool is_locked() ;

void set_bufferable(bool = true);
bool is_bufferable() ;

void set_cacheable(bool = true);
bool is_cacheable() o

void set_write_allocate(bool = true);
bool is_write_allocate() ;

void set_read_allocate(bool = true);
bool is_read_allocate() ;

}s

struct axi4: public request{

axi4& operator=(axid&) ;

void set_exclusive(bool = true);
bool is_exclusive() 2

void set_bufferable(bool = true);
bool is_bufferable() ;
void set_modifiable(bool = true);

bool is_modifiable() ;

void set_read_other_allocate(bool = true);
bool is_read_other_allocate() 2

void set_write_other_allocate(bool = true);
bool is_write_other_allocate() o

}s;

struct ace: public axid {

ace& operator=(ace& 0);

void set_domain(domain_e);
domain_e get_domain() 5

void set_snoop(snoop_e);
snoop_e get_snoop() g

void set_barrier(bar_e);
bar_e get_barrier() 3

13

void set_unique(bool);
bool get_unique() ;
I

The responses are represented as:

struct response {
void reset();
response& operator=(response& 0);

resp_e from_tlm_response_status(tlm::tlm_response_status);
tlm: :tlm_response_status to_tlm_response_status(resp_e);

void set_resp(resp_e);
resp_e get_resp() ;

bool is_okay() ;
void set_okay();

bool is_exokay() ;
void set_exokay();

bool is_slverr() ;
void set_slverr();

bool is_decerr() ;
void set_decerr();
}s

struct ace_response: public response {

void set_cresp(uint8_t);
uint8_t get_cresp() ;

bool is_pass_dirty() :
void set_pass_dirty(bool = true);

bool is_shared() ;

void set_shared(bool = true);

bool is_snoop_data_transfer() o
void set_snoop_data_transfer(bool = true);

bool is_snoop_error() g
void set_snoop_error(bool = true);

bool is_snoop_was_unique() ;
void set_snoop_was_unique(bool = true);

14

bool is_ack() 5
void set_ack(bool = true);

};

Those different structures are combined in an generic payload extension. The use of just one
extension eases the implementation of initiators and targets, careful data layout ensures that the
memory footprint is as little as possible:

template<typename REQ, typename RESP=response>
struct axi_extension :

public common,

public REQ,

public RESP

void reset();
void reset(REQ *);

void add_to_response_array(response&) ;
std: :vector<response> &get_response_array () ;
std: :vector<response> &get_response_array();

void set_response_array_complete(bool = true);
bool is_response_array_complete();

};

The definition as template allows to easily create an AXI3 as well as an AXI4 and an ACE
extensions without duplicated declarations. This allows even to easily add an AXI4-Lite extension.
Purpose of the response array is to collect the responses of all read data beats for further use
e.g. in protocol state machine implementations.

7.2 Phases Declarations and Protocol traits

According to the specified protocol modeling 4 additional non-ignorable phases need to be
defined:

// additional AXI/ACE phases
DECLARE_EXTENDED_PHASE (BEGIN_PARTIAL_REQ) ;
DECLARE_EXTENDED_PHASE (END_PARTIAL_REQ) ;
DECLARE_EXTENDED_PHASE (BEGIN_PARTIAL_RESP);
DECLARE_EXTENDED_PHASE (END_PARTIAL_RESP) ;
DECLARE_EXTENDED_PHASE (ACK) ;

Since these are non-ignorable a specific protocol traits needs to be defined to comply with the
TLM2.0 LRM:

using axi_payload = tlm::tlm_generic_payload;
using axi_phase = tlm::tlm_phase;

// azi protocol traits class
struct axi_protocol_types {

15

typedef axi_payload tlm_payload_type;
typedef axi_phase tlm_phase_type;
s

7.3 Socket Interfaces and Sockets

The socket interface is for the backward path extended to allow snooping in a blocking manner.
The other interfaces are re-used from the tlm base protocol specification:

// AXI socket interfaces
template <typename TRANS = tlm::tlm_generic_payload>
class ace_bw_blocking_ transport_if : public virtual sc_core::sc_interface {
public:
virtual void b_snoop(TRANS& trans, sc_core::sc_time& t) = 0;

};

// alias declaration for the forward interface
template <typename TYPES = tlm::tlm_base_protocol_types>
using axi_fw_transport_if = tlm::tlm_fw_transport_if<TYPES>;
// alias declaration for the backward interface:
template <typename TYPES = tlm::tlm_base_protocol_types>
using axi_bw_transport_if = tlm::tlm_bw_transport_if<TYPES>;
// alias declaration for the ACE forward interface
template <typename TYPES = tlm::tlm_base_protocol_types>
using ace_fw_transport_if = tlm::tlm_fw_transport_if<TYPES>;
// the ACE backward interface:
template <typename TYPES = tlm::tlm_base_protocol_types>
class ace_bw_transport_if

: public tlm::tlm_bw_transport_if<TYPES>

, public virtual ace_bw_blocking_transport_if<

typename TYPES::tlm_payload_type>

{3

Based on the definitions so far the initiator and target sockets are declared as follows:

template <unsigned int BUSWIDTH = 32
, typename TYPES = axi_protocol_types
, int N =1
, sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND>
struct axi_initiator_socket
public tlm::tlm_base_initiator_socket <BUSWIDTH,
axi_fw_transport_if<TYPES>,
axi_bw_transport_if<TYPES>, N, POL>

using base_type =
tlm::tlm_base_initiator_socket <BUSWIDTH,
axi_fw_transport_if<TYPES>,
axi_bw_transport_if<TYPES>, N, POL>;

axi_initiator_socket() : base_type()

16

{32

explicit axi_initiator_socket(char* name) :base_type(name)

{1}

char* kind() override {
return "axi_initiator_socket";

};

template <unsigned int BUSWIDTH = 32
, typename TYPES = axi_protocol_types
, int N =1
, sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND>
struct ace_initiator_socket
public tlm::tlm_base_initiator_socket <BUSWIDTH,
ace_fw_transport_if<TYPES>,
ace_bw_transport_if<TYPES>, N, POL>

{
using base_type =
tlm: :tlm_base_initiator_socket <BUSWIDTH,
ace_fw_transport_if<TYPES>,
ace_bw_transport_if<TYPES>, N, POL>;
ace_initiator_socket() : base_type()
{1}
explicit ace_initiator_socket(charx name) :base_type(name)
{1
char* kind() override {
return "ace_initiator_socket";
}
Is

template <unsigned int BUSWIDTH = 32
, typename TYPES = axi_protocol_types
, int N =1
, sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND>
struct axi_target_socket
public tlm::tlm_base_initiator_socket <BUSWIDTH,
axi_fw_transport_if<TYPES>,
axi_bw_transport_if<TYPES>, N ,POL>

using base_type =
tlm: :t1lm_base_initiator_socket <BUSWIDTH,
axi_fw_transport_if<TYPES>,
axi_bw_transport_if<TYPES>, N, POL>;

axi_target_socket() : base_type()

17

{32

explicit axi_target_socket(char* name) : base_type(name)

{1}

char* kind() override {
return "axi_target_socket";

};

template <unsigned int BUSWIDTH = 32
, typename TYPES = axi_protocol_types
, int N =1
, sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND>
struct ace_target_socket
public tlm::tlm_base_target_socket <BUSWIDTH,
ace_fw_transport_if<TYPES>,
ace_bw_transport_if<TYPES>, N ,POL>

{
using base_type =
tlm: :tlm_base_target_socket <BUSWIDTH,
ace_fw_transport_if<TYPES>,
ace_bw_transport_if<TYPES>, N, POL>;
ace_target_socket() : base_type()
{1}
explicit ace_target_socket(char* name) : base_type(name)
{32
char* kind() override {
return "ace_target_socket";
}
s

8 Recommended Additions

8.1 Convenience Layer

The package provides a convenience layer based on the described data structures. part of the
convenience layer are initiator and target socket handling the aforementioned protocol.

8.2 Transaction Tracing

Debugging complex communication schemes and structures is difficult and needs appropriate
support for vizualization.

18

Therefor a tracing solution based of the SystemC Verification Library (SCV) should be imple-
mented. This way the tracing is compatible with major EDA solutions as they build on top of
the same interface.

8.3 Protocol Checker

To make sure the rules of this spec, the TLM2.0 LRM and the ‘AMBA AXI and ACE Protocol
Specification’ are obeyed a protocol checker shoud| be implemented flagging erronous states and
sequences. Used in conjunction with the transaction tracing it can refer to and highlight the
offending transactions.

19

	Preface
	About this Specification
	References

	Introduction
	Channel Signal Mapping
	Write channels
	Write Address (AW)
	Write Data (W)
	Write Response (B)

	Read channels
	Read address (AR)
	Read data (R)

	Snoop channels
	Snoop address (AC)
	Snoop response (CR)
	Snoop data (CD)

	DMI and Debug Transport Communication
	Blocking Communication
	b_transport and b_snoop Call Sequence

	Non-blocking Communication
	Extended Phases
	Permitted Phase Transitions
	Write Access
	Read Access
	Snoop Access

	nb_transport Call Sequences for basic AXI/ACE Protocol Transactions
	nb_transport Call Sequence for ACE Transaction Groups
	nb_transport Transaction and Clock Boundaries
	Non-ignorable Phases and Protocol Traits

	Implementation Guideline
	Payload Extension
	Phases Declarations and Protocol traits
	Socket Interfaces and Sockets

	Recommended Additions
	Convenience Layer
	Transaction Tracing
	Protocol Checker

