YAML ATP Input Specification

Eyck Jentzsch

Contents
1 Preface
1.1 About this Specification 1
1.2 References 1
2 Traffic profile definition 2
2.1 YAML file format 2
2.2 YPRF file format 3
2.2.1 Section profile_list 3
222 Sectionwait. 4
2.2.3 Sectionprofile. 4
2.2.4 Section generator 5
225 Section trans_id 5
226 Section address. 6
2.2.7 Section timing 6
2.2.8 Section signals. 7
3 Appendix 8
31 Examples. 8
3.1.1 ssingleprofile 8
3.1.2 Profile with advanced address stepping and rate limitation 8
3.1.3 Sequential profile with syncronization 8

1 Preface

1.1 About this Specification

This specification describes the specification of traffic profiles to be consumed by a traffic profile
unut (TPU). Features implemented by the TPU are derived from AMBA Adaptive Traffic Profiles
Specification and further enhanced to allow the generation of specific transaction according to
the AXITLM or CHITLM specification.

1.2 References

This manual focuses on the extension of TLM2.0 to model the AMBA AXI and ACE protocol at
loosly and approximately timed accuracy. For more details on the protocol and semantics, see
the following manuals and specifications:

e AMBA(R) Adaptive Traffic Profiles Specification, 15 March 2019, ARM [HI 0082A
e AMBA® AXI™ and ACE™ Protocol Specification, 31 March 2020, ARM [HI 0022H

2 Traffic profile definition

Traffic profiles are specified in YAML format. YAML is a well-specified and easily readable
markup language. Using this format, we can make use of a pre-verified library, which provides a
matured parser. The parser allows to give error messages with references into the input file (line
and column). It also offers the possibility to easily integrate further TPU parameters without
fiddling in the parser. It simplifies the extension of the traffic profile for farther features.

2.1 YAML file format

Whitespace indentation is used for denoting structure; however, tab characters are not allowed
as part of that indentation. Comments begin with the number sign (#), can start anywhere on
a line and continue until the end of the line. Comments must be separated from other tokens by
whitespace characters [15] If # characters appear inside of a string, then they are number sign
(#) literals. List members are denoted by a leading hyphen (-) with one member per line. A list
can also be specified by enclosing text in square brackets (][...]) with each entry separated by a
comma. An associative array entry is represented using colon space in the form key: value with
one entry per line. YAML requires the colon be followed by a space so that scalar values such as
http://www.wikipedia.org can generally be represented without needing to be enclosed in quotes.
A question mark can be used in front of a key, in the form “7key: value” to allow the key to contain
leading dashes, square brackets, etc., without quotes. An associative array can also be specified
by text enclosed in curly braces ({...}), with keys separated from values by colon and the entries
separated by commas (spaces are not required to retain compatibility with JSON). Strings (one
type of scalar in YAML) are ordinarily unquoted, but may be enclosed in double-quotes ("),
or single-quotes ('). Within double-quotes, special characters may be represented with C-style
escape sequences starting with a backslash (). According to the documentation the only octal
escape supported is \0. Full documentation for YAML can be found on its official site. Outlined
below are some simple concepts that are important to understand when starting to use YAML.

e Scalars, or variables, are defined using a colon and a space. The entire set of (key value)
pairs at the same indentation level (block format) form an associative array (dictionary)
integer: 25
string: "25"
float: 25.0
boolean: Yes

e Lists can be defined using a conventional block format or an inline format that is similar
to JSON.

--- # Shopping List in Block Format

--- # Shopping List in Inline Format

L , ,]

--- # Shopping List as associative array
milk:

eggs:

juice:

e Strings can also be denoted with a | character, which preserves newlines, or a > character,
which folds newlines.

data: |
Each of these
Newlines
Will be broken up

data: >
This text is
wrapped and will
be formed into
a single paragraph

2.2 YPREF file format

A YAML profile file (YPRF) forms a parallel context. This means if a list of profiles as specified
they are executed in parallel. Subsequent profile _list definitions may open sequential or parallel
contexts.

All integer values listed in the following sections may be specified in decimal, octal, and
hexadecimal notation according to the YAML specification.

2.2.1 Section profile_list
A profile-list consist of a list of key-value pairs where the following keys are supported:
e parallel _execution - boolean, default: true
if set to false the profiles in this list are executed sequentailly
e profile - dictionary
a profile definition
e delay - integer
number of cycles to wait at this point (only if parallel _execution is set to false)
e post - string
posts a messgage to the syncronizer
e wait - dictionary
wait for a posted message of one ore more other TPUs
® message - string
create a message print at the simulation output
e include - string
include the content of the denoted file at this point of the file
e profile list - list

a nested profile list.

2.2.2 Section wait

The wait key allows to wait for events from other TPUs. The wait dictionary can contain 2 keys:
inst and event

Syntax Comment

- wait: the wait key

inst: <name> inst name is a regular expresssion allowing to filter the source of
the posted message

event: <name> event name is a regular expression to match the posted message

2.2.3 Section profile

The profile keyword is used to start a profile. It must be the first keyword used in a file. When
the profile keyword is seen, it sets all parameters back to the default values.

Syntax Comment

- profile: <name> If more than one profile defined in the file, each traffic profile must
start with a dash and space (-). It is recommended to use dash
and space even if only one profile is defined. All statements of a
profile needs to be indented to the column of the profile key (2
space in this example).

type: <type list> required, The type designates the type of transaction in the profile.
It may be a single type or a inline formatted list. Allowed entry a
described below.

count: <int> Specifies the maximum number of transactions that are generated
for the profile. Once the count of transactions issued reaches
MAX-TRANS, then the TPU stops generating new transactions for

that profile.

generator: Set the value of a generator parameter, overriding any default value
specified in the Traffic Profile Spec (see section 1.2) Table 4-1.

trans_id: Specifies the way transaction ids are generated

address: Specifies the address generation scheme

data: random optional, Specifies how data is generated for each transaction.
Since only random is being supported it can be omitted.

timing: Override the default timings specified in Traffic Profile Spec (see
section 1.2) Table 3-1

signals: Set the value of a protocol signal, overriding the default value

specified in the AMBA spec (see section 1.2).

The following types of transactions are supported:

READ

WRITE

ReadNoSnp
ReadOnce
ReadOnceCleanlinvalid
ReadOnceMakelnvalid
ReadClean

ReadNotSharedDirty
ReadShared
ReadUnique
WriteNoSnpFull
WriteUniqueFull
WriteLineUniqueFull
WriteBackFull
WriteClean
WriteEvict

Evict

CleanShared
Cleanlnvalid
CleanSharedPersist
Makelnvalid
CleanUnique
MakeUnique
StashOnceUnique
StashOnceShared
WriteUniqueFullStash
WriteUniquePt|Stash

Those types map to the respective AMBA ACE snoop types.

2.2.4 Section generator

The generator keyword is used to set the value of a generator parameter, overriding any default
value specified in the Traffic Profile Spec (see section 1.2) Table 4-1. The supported generator
commands are:

Syntax Comment

TxnLimit: <limit> optional, maximum number of outstanding transactions for the
profile, default = 1

TxnSize: <bytes> optional, number of bytes in each transaction request, must be a
power of 2, default = 64

Rate: <rate spec> optional, specify the rate in SI Units (e.g. GBps). If specified all
transactions specified using type: must be either read or write

Full: <int> optional, size of the read or write fifo

Start: <level> optional, one of empty or full, defines the start level of read or

write fifo. If ommitted the default is full for read and empty for
write accesses

2.2.5 Section trans_id

The trans_id keyword specifies the pattern of ids to use. In AXI, the corresponds to AXID. The
form of the command is

Syntax Comment

type: cycle|unique defines the kind of generation the transaction id
range: [<lower>,<upper>] lower and upper are the bounds on the trans_id.

For type=cycle, the id used for each transaction will increment starting with the fower to the
upper and starting over. For type=unique, the id used will come from a pool of ids, but an id
may only be used for one outstanding transaction at a time.

2.2.6 Section address

The address keyword is used to specify the pattern of addresses used in transactions. The simple
forms of the command are:

Syntax Comment

type: <stepping> Stepping = sequential or random

range: [<base>,<range>]| the starting address and range of generated addresses. base +
range-1 = the highest address

alignment: <align- If omitted the accesses are not aligned. A value of 0 indicates that

ment size> accesses shall be align to the data bus width

For sequential, the address will increment by the size of the transaction until it issues a transaction
that includes highest address, at which point it starts at Base again. For random, the address is
randomly selected between Base and Range-1. For random, the starting seed will be fixed. Note
that protocol restrictions must be obeyed. As specific examples in AXI:

e the transaction address of burst type INCR must be aligned to the size of the transaction
e the transaction address of burst type WRAP must be aligned to the size of the data bus.

For more complex stepping, there is a two-dimensional command of the form:

Syntax Comment

type: <stepping> stepping = sequential or random

range: [<base>,<range>] the starting address and range of generated addresses. base +
range-1 = the highest address

alignment: <align- If omitted the accesses are not aligned. A value of 0 indicates that

ment size> accesses shall be align to the data bus width

xrange: <xrange>

stride: <stride>

2.2.7 Section timing

The timing keyword is used to override the default timings specified in Traffic Profile Spec (see
section 1.2) Table 3-1.

Syntax Comment

<timing name>: <value> optional, timing name denotes a timing name according to the
ATP spec, value may be a single type or a inline formatted list
denoting the number of cycles

The following timing names are supported:

e ARTV

ARR
RIV
RBV
RBR
RLA
AWTYV
AWV
AWR
WIV
WBR
WBV
BV
BR
BA
ACTV
ACR
CRV
CRR
CDIv
CDBR
CbBV

2.2.8 Section signals

The signal keyword is used to set the value of a protocol signals, overriding the default value
specified in AMBA Spec (see section 1.2).

Syntax Comment

<signal name>: <value> optional, signal name denotes a signal name according to the
AMBA spec (see section 1.2), value may be a single value or a
inline formatted list denoting the value of the signal.

The following signal names are supported:

AxADDR
AxBURST
AxCACHE
AxID
AxLEN
AxLOCK
AxPROT
AxQOS
AxREGION
AxSIZE
BRESP
RDATA
RRESP
WDATA
WSTRB

o AWATOP
o AWSTASHNID
e AWSTASHLPID

Those signals map to the respective AMBA AXI/ACE channel signals.

3 Appendix

3.1 Examples
3.1.1 single profile

- profile: "readnosnoop"

generator:

TxnLimit: 64
count: 1500
type: []
address:

type:

range: [0x0, 0x20000]
trans_id:

type:

range: [0, 64]
signals:

AXCACHE: Oxf

3.1.2 Profile with advanced address stepping and rate limitation

- profile: "readnosnoop"

generator:

TxnLimit: 64

Rate:

Full: 1024
count: 10000
type:
address:

type:

range: [0x0, 0x80000]

xrange: 0x40

stride: 0x100
trans_id:

type:

range: [0, 64]
signals:

AXCACHE: 15

3.1.3 Sequential profile with syncronization

- profile_list:
- parallel_execution: false

- message: "start_miss"
- profile_list:
- profile: "read_once_0x0"
generator:
TxnLimit: 64
count: 1500
type: [ReadOnce]
address:
type: sequential
range: [0x0, 0x20000]
trans_id:
type: cycle
range: [0, 64]
signals:
AXCACHE: 15
message: '"end miss"
post: '"checkpointl"

wait:
inst: "\\.caiu"
event: '"checkpointl"
delay: 1000
message: 'start_hit"
profile_list:
- profile: "read_once_0x0"
generator:
TxnLimit: 64
count: 1500
type: [ReadOnce]

address:
type: sequential
range: [0x0, 0x20000]
trans_id:
type: cycle
range: [0, 64]
signals:
AXCACHE: 15
- message: "end_hit"

	Preface
	About this Specification
	References

	Traffic profile definition
	YAML file format
	YPRF file format
	Section profile_list
	Section wait
	Section profile
	Section generator
	Section trans_id
	Section address
	Section timing
	Section signals

	Appendix
	Examples
	single profile
	Profile with advanced address stepping and rate limitation
	Sequential profile with syncronization

