
LLNL-PRES-817002
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Metall:
A Persistent Memory Allocator For Data-Centric Analytics

Keita Iwabuchi, Roger Pearce, Maya Gokhale

2
LLNL-PRES-817002

Background
Large-scale Data Analytics

§ High volume data analytics is one of the key challenges in exascale

§ Data ingestion
— Indexing and partitioning data with analytics-specific data structures

• e.g., read raw graph data from text files, and transform into a graph data structure

— Often more expensive than analytics
— The same data (or derived data) is re-ingested frequently

• e.g., run multiple analytics on the same data, changing parameters; develop/debug analytics program

Raw Data Data Structure

Data Ingestion
Analytics

Data Ingestion time >> Analysis time

3
LLNL-PRES-817002

Background
Persistent Memory (PM) in HPC

§ Substantial performance improvements and cost reductions in
non-volatile random-access memory (NVRAM)

§ Many HPC systems have various types of NVRAM devices today

Byte addressable storage
(NVDIMM)

Comp node

SSD, HDD

Global file system
(e.g., lustre, GPFS, VAST)

. . .

These devices offer cost-effective ways of persistently storing large
datasets with efficient means of accessing the data for processing

Supercomputers w/ PM
• Sierra
• Summit
• Aurora
• Mammoth
• Fugaku (RIKEN, Japan)
.
.
.

4
LLNL-PRES-817002

Background
Store Data into PM

§ Data serialization is expensive
— Dismantling and assembling large complex data structures is expensive in terms of performance and
programming cost

§ Should leverage the file system
— Tremendous amount of powerful technologies
— We can support various persistent memory types

Can we allocate data into file directly and store the data as is
while providing transparent access to applications?

5
LLNL-PRES-817002

§ Maps a file into a process's virtual memory (VM) space

§ Applications can access mapping area as if it were
regular memory

§ Demand paging
— OS performs I/O on-demand by page granularity (e.g., 4 KB or 64 KB)
— OS keeps cache in DRAM (page cache)

§ Can map a file bigger than the DRAM capacity

Background
Memory-mapped File Mechanism (mmap() system call)

Main Memory (DRAM)

Process address space
(virtual memory)

Text

Stack

Heap

File
mmap()

Mapped
file

On-demand
I/O by OS

Page
cache

App Transparent
access

(e.g., /mnt/ssd/file)

6
LLNL-PRES-817002

§ Example

Background
Memory-mapped File Mechanism (mmap() system call)

mmap is powerful; however,
calling mmap for every memory allocation is expensive

int fd = open("/mnt/ssd/file", O_RDWR); // Open a file

int size = 1024;
// Maps a file into main memory (1024 bytes)
int* array = (int*)mmap(NULL, size,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

close(fd);

array[0] = 10;

msync(array, size, MS_SYNC); // Flush dirty pages into the file
munmap(array, size); // Close the mapping

7
LLNL-PRES-817002

§ A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpfs)
— Can leverage file system technologies

§ Enables applications to allocate heap-based objects into PM,
just like main-memory

§ Can resume memory allocation work after restarting

§ Incorporates state-of-the-art allocation algorithms
— Some key ideas from SuperMalloc[Kuszmaul'15] and jemalloc

§ Employs the API developed by Boost.Interprocess (BIP)
— Useful for allocating C++ custom data structures in PM

Metall
A C++ Allocator for Persistent Memory

App data (files)

Main Memory
(DRAM)

Persistent
Memory (PM)

Page
cache

Application

MetallHeap
allocator

App
data

mmap()

Allocator

[github.com/LLNL/metall]

8
LLNL-PRES-817002

Persistent Memory Allocation using Metall

void main () {

metall::manager metall_mgr(metall::create_only, "/ssd/test");

int* n = metall_mgr.construct<int>("val0")();

*n = 10;

}

void main () {

metall::manager metall_mgr(metall::open_only, "/ssd/test");

int* n = metall_mgr.find<int>("val0").first;

std::cout << *n << std::endl;

}

Reattach the data (open.cpp)

Create new data (create.cpp)

$./create
$./open
10

TerminalStore a key to retrieve the
data later

Allocate and
construct an object

Retrieve data with its key

Metall::manager's destructor synchronizes data with the PM (files)

Directory to store dataAllocate a manager object

Data is directly accessed in PM
(no serialization overhead)

9
LLNL-PRES-817002

Metall with C++ Standard Template Library (STL) Container

void main () {

metall::manager metall_mgr(metall::create_only, "/ssd/test");

vec_t* pvec = metall_mgr.construct<vec_t>("vec")(metall_mgr.get_allocator());
pvec->push_back(10);
}

void main () {

metall::manager metall_mgr(metall::open_only, "/ssd/test");

auto pvec = metall_mgr.find<vec_t>("vec").first;
pvec->push_back(20);
}

Reattach the data (open.cpp)

Create new data (create.cpp)

using vec_t = vector<int, metall::allocator<int>>;
A vector type with the STL allocator in Metall

Arguments to vec_t's constructor
Can use it normally, including
changing its capacity

Template parameters of the STL vector container
template<

class T,
class Allocator = std::allocator<T>

> class vector;

Can resume work, including
changing its capacity

Metall follows the C++ standard
style of using custom allocator
(no directives, no change to compilers)

10
LLNL-PRES-817002

§ Metall does not assume that file(s) are mapped to the same VM addresses every time

Random Memory Placement

VM address space

P
oi
nt
er

0xC1A

0x007

VM address space

P
oi
nt
er

O
b
je
ct

0x007

1st execution

2nd execution

File

How to fix the random memory placement issue?

O
b
je
ct

11
LLNL-PRES-817002

§ An offset pointer holds the offset from itself to the object it points to

— Metall inherits offset_pointer implemented in Boost.Interprocess library (BIP)
— BIP's offset pointer works (almost) transparently with the raw pointer
— The concept of non-raw pointer is being integrated in C++

offset pointer

VM address space
of
fs
et

p
oi
nt
er

O
b
je
ctOffset to

the object

int n[2];
offset_ptr<int> p(n);
p[0] = 1;
++p;
--p;

template <class T>
struct offset_pointer {

int64_t offset;
... many methods ...

}

struct data { int n };
data d;
offset_ptr<data> p(&d);
p->n = 10;
p = nullptr;

Possible implementation

Usage examples

12
LLNL-PRES-817002

§ Raw pointer
— Must be replaced with offset pointers

§ Reference, virtual function, and virtual base class
— Must be removed since raw pointers are used

§ STL Container
— Some implementations do not support offset pointers fully
— Boost.Container library is compatible with Metall

§ Static data members are not supported

Solutions To Random Memory Placement

13
LLNL-PRES-817002

Persistence Policy — fine grained vs coarse grained

§ Fine grained persistence policy
— Synchronizes data with persistent memory after every write operation
— Ideal for transactional operations with recent byte-addressable PM
— Can incur an unnecessary overhead for non-transactional apps

§ Coarse grained persistence policy
— Metall employs this policy
— Synchronizes data only when initiated by application
— Could cause data inconsistency if there is a crash before synchronizing

14
LLNL-PRES-817002

Coarse grained persistence model in Metall

metall::manger manager(metall::open, ...); // mmap()

// Application does some work:

// memory allocations and write operations

manager.~metall::manager(); // msync() and munmap()

Data is consistent

Data could be inconsistent

Data is consistent

§ Consistent mark
— Metall leaves a mark (file) at the end of its destructor
— The mark is deleted when Metall opens the data

§ Read-only open mode
— Writing to data allocated in Metall space causes a segmentation fault

• Metall maps files with the read-only mode in mmap()
— Metall does not delete the consistent mark

15
LLNL-PRES-817002

§ Another way to create a consistent data

Snapshot/versioning in Metall

metall::manger manager(...);

// Application does some work

manager.snapshot('/mnt/ssd2/data');

// Application does some work

manager.~metall::manager();

• calls msync() and copies the mapped files to the '/mnt/ssd2/data'
• '/mnt/ssd2/data' is consistent if snapshot() finishes correctly

16
LLNL-PRES-817002

Snapshot/versioning in Metall (cont'd)

metall::manager manager(metall::create_only, "/ssd/dir");

// Allocate an int object and assign 10
auto *n = manager.construct<int>("n")();
*n = 10;

manager.snapshot("/ssd/snapshot");

*n = 20;

// Assume that a fatal error happens here

§ Demonstration of Metall's snapshot

// 'flag' is false
bool flag = metall::manager::consistent("/ssd/dir");

if (metall::manager::consistent("/ssd/snapshot")) {

// Open the snapshot
metall::manager manager(metall::open_only, "/ssd/snapshot");

int *n = manager.find<int>("n").first; // reattach 'n'
std::cout << n; // 'n' is 10

}

create.cpp open.cpp

17
LLNL-PRES-817002

Metall Internal Architecture

18
LLNL-PRES-817002

Key Design Points

§ Focus on relatively large size allocations

§ Virtual memory is cheap in 64-bit machine, physical memory is dear [Kuszmaul'15]

§ Leverage demand paging (physical memory is not consumed until accessed)

Simplify implementation & increase speed

19
LLNL-PRES-817002

Metall Internal Architecture
Internal Allocation Sizes

§ Small size category (e.g., <= 1 MB)
— Rounded up to the nearest internal allocation size
— Internal sizes are designed to keep internal fragmentations < 25%[Supermalloc][jemalloc]

§ Large size category (e.g., > 1 MB)
— Rounded up to the nearest power of 2
— Designed not to waste physical memory much

• Thanks to demand paging, untouched pages do not consume physical memory
• Worst case: 1.6% when allocating 1MB + 1 B with 4 KB page

20
LLNL-PRES-817002

Metall Internal Architecture
Application Heap Segment & Allocation Sizes

§ Application heap segment
— All application data (allocated by Metall) are stored in this region
— Reserves a large (e.g., a few TB) continuous VM region in the process's address space
— Maps backing files to the VM region on demand

(empty) . . .

Chunks of a large allocationChunk for small allocations
(consists of the same size slots)

0 1 2 3 4Chunk no.
Dynamically
grows

Chunk for small
allocations

.

The default chunk size is 2 MB

21
LLNL-PRES-817002

Metall Internal Architecture
Memory Allocation Management Data (SLUB allocator)

§ Allocated in DRAM, separating from application heap segment to improve data locality
— Unserialized/serialized when Metall's constructor/destructor is called
— Employs state-of-the-art allocation algorithms
— Free-slot caches

• CPU core level to improve multi-thread performance

voi
d*

(empty) . . .

Chunk Directory

Chunks of a large allocation

0 1 2 3 4chunk no.

Chunk for small allocations
(consists of the same size slots)

0 1 2 3 4Chunk no.

Management Data (constructed in DRAM)

0 1 2 3 4bin no.

CH10

CH0

.
.

.

Bin Directory (non-full chunks)
(only for small allocations)

St
ac

k
or

pr
io

rit
y

qu
eu

e
Application Data (stored in Persistent Memory as files and mapped to DRAM)

CH4

CH9

Dynamically
grows

Chunk for small
allocations

chunk info
bin no. = 0
chunk type = small
#of occupied slots = 3
*slot occupancy bitset

. . .

. . .

. . .

chunk info
bin no. = 19
chunk type = large

Multi-layer
Bitset

.
.

.

. . .

pointer

. . .

Name Directory
(key-value store)

Name Offset

"data1" 0xF32E0

"vec-1" 0xF3D40

. . .

22
LLNL-PRES-817002

§ Calls msync() and copies backing-files to another location using reflink

§ reflink
— copy-on-write file copy mechanism implemented in filesystems (e.g., XFS, ZFS, Btrfs)

— In case reflink is not supported by the filesystem, Metall automatically falls back to a regular copy

Snapshot/Versioning in Metall

Modified data blockOriginal data blocks

Original file

Copied (reflink) file

25
LLNL-PRES-817002

Evaluation

26
LLNL-PRES-817002

Evaluation
Graph Construction Benchmark

§ A necessary step before performing actual graph analytics

§ Partition and ingest raw graph data into a memory access efficient data structure

§ Often more expensive graph analytics step

Graph

0
1
2

1 2

0

0

0

1

2

Neighbor vertex IDs

S
ou
rc
e
ve
rt
ex
 ID
s

Vertex ID is a 64-bit int

Graph Data Structure

{0, 1}
{0, 2}

Raw data
(edge list)

Convert

27
LLNL-PRES-817002

Evaluation
Graph Data Structure

§ Adjacency list (one of de-facto standard graph data structures)

H
as
h
ta
b
le

(u
no
rd
er
ed
_m
ap
) Dynamic array (vector)

0
1
2

1 2

0

0

Bank-0
(sub adjacency-list)

A
rr
ay
 (
fi
xe
d
)

Adjacency list
(dynamically grows)

Multi-banked concurrent adjacency list

Mutex

Bank No = MOD(hash(source vertex ID), #of banks)

Neighbor vertex IDs

S
ou
rc
e
ve
rt
ex
 ID
s

Vertex ID is a 64-bit int

Bank-1
(sub adjacency-list)

Bank-2
(sub adjacency-list)

Dynamic array (vector)

Dynamic array (vector)

28
LLNL-PRES-817002

Evaluation
Adjacency List Implementation

class AdjacencyList {

using edgeVec = vector<int>;
using vertexTable = unordered_map<int, edgeVec>;
vertexTable table;

AdjacencyList() : table {}

void addEdge(int source, int target) {
table[source].push_back(target);

}

}

Adjacency-list with the default allocator (std::allocator)

H
as
h
ta
b
le

(u
no
rd
er
ed
_m
ap
) Dynamic array (vector)

Adjacency list
(dynamically grows)

Dynamic array (vector)

Dynamic array (vector)

＊some unimportant details are omitted

29
LLNL-PRES-817002

Evaluation
Allocator-Aware Adjacency List

§ Adjacency list with a custom allocator

template <class Alloc = std::allocator<std::byte>>
class AdjacencyList {

using edgeVec = vector<int, Alloc::rebind<int>::other>;

using tableAlloc = Alloc::rebind<pair<int, edgeVec>>::other;
using vertexTable = unordered_map<int, edgeVec, /* ... */, tableAlloc>;
vertexTable table;

AdjacencyList(Alloc alloc = Alloc()) : table(alloc) {}

// No changes to this method
void addEdge(int source, int target) {}

}

Changed to an allocator-aware data structure, following the C++ standard style
(no code depends on Metall)

30
LLNL-PRES-817002

Evaluation
Allocate Adjacency List Using Metall

using AdjList = AdjacencyList<metall::manager::allocator_type<std::byte>>;

metall::manager metall_mgr(metall::create_only, "/ssd/graph");

auto* adj = metall_mgr.construct<AdjList>("graph")
(metall_mgr.get_allocator());

adj->addEdge(1, 2);

auto* adj = new AdjacencyList();

adj->addEdge(1, 2);

With std::allocator (allocate in DRAM, no persistency)

With Metall

The same data structure can be used with std::allocator

31
LLNL-PRES-817002

Evaluation
Machine Configuration

§ Used two single-node machines at LLNL

EPYC (conventional PM device)
Storage NVMe SSD

DRAM 256 GB

CPU AMD EPYC CPU x 2
(96 threads)

Optane (byte addressable PM device)
Storage Intel Optane DC Persistent

Memory (App Direct Mode + DAX)
DRAM 192 GB
CPU Intel Skylake x 2 (96 threads)

32
LLNL-PRES-817002

§ Baselines (memory allocators that use file-backed mmap underneath)
— Boost.Interprocess

• Uses a single tree structure for memory allocation management
— memkind (PMEM kind)

• Provides an allocator built on top of jemalloc
• Cannot reattach data (uses PM as extended volatile memory)

Evaluation Result
Dynamic Graph Construction

B
et
te
r

(SCALE 30 is larger than DRAM)

Metall provides persistent
memory features whereas
PMEM kind does not

In
se
rt
ed
 E
d
g
es
/s
 (m
ill
io
n)

EPYC (NVMe SSD) Optane (byte-addressable PM)

Graph SCALE (the number of inserted edges = 2SCALE x 32)

shared-memory
multi-thread

Boost.Interprocess (BIP) memkind (PMEM kind) Metall

39
LLNL-PRES-817002

§ Heap allocators (e.g., jemalloc, tcmalloc, malloc implementations)
— Many studies have been conducted and showed notable results
— Cannot persistently store their internal structures

§ Persistent Memory Allocator
— NVMalloc

• Allocates memory on a distributed non-volatile memory (NVM) storage system
• Creates a file per memory allocation request

— libpmemobj (in PMDK)
• Employs a fine-grained persistence policy (ideal for transactional operations)

— Boost.Interprocess
• Designed for interprocess communication (not designed as a persistent memory)

§ Persistent Data Store
— Hierarchical Data Format (HDF)

• Allows applications to store data with portable formats
• Metall is designed as a lightweight tool by limiting data portability

Related Work

Metall is designed as a lightweight and high-performance persistent
memory allocator with the coarse-grained persistence policy

40
LLNL-PRES-817002

§ A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpfs)

§ Enables applications to allocate heap-based objects into PM,
just like main-memory

§ Rich API for custom C++ data structures

§ Employs the coarse-grained consistency model

§ Provides snapshot/versioning capabilities

§ Incorporates state-of-the-art allocation algorithms

Summary (1/2)
Metall

App data
(files)

Main
Memory
(DRAM)

Persistent
Memory
(PM)

Page cache

Application

Metall

mmap()

Allocator

41
LLNL-PRES-817002

Summary (2/2)
Metall: A Persistent Memory Allocator For Data-Centric Analytics

Metall enables applications to efficiently leverage persistent memory for
data-centric computing

Data ingestion Analytics

Persistent Data

Data Analytics Workflow Development/Debug Workflow

Data ingestion Analytics

PM
Data

ingestion

Analytics 1

Analytics 2

Data ingestion Debug Data ingestion Debug

Persistent Data
PM

Data
ingestion

Analytics 1 Analytics 2

Debug

Debug

Snapshot

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

