Metall: An Allocator for Persistent Memory

g\ AR XX
> } RAL ’0:0
) .
(CP s Geasc
L 4 Center for Applied
St ’.‘0000 R4 Scientfic Computing
L XY ’0
EXASCALE COMPUTING PROJECT *

Keita lwabuchi, Roger Pearce, Maya Gokhale

LLNL-PRES-817002

This work was performed under the auspices of the U.S. Department o ergy by Lawrence Livermore National Labor . Iﬂaa"?i’g?‘]r;?le_é_évoer;r':]oor;e

contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background
Large-scale Data Analytics

= High volume data analytics is one of the key challenges in exascale

= Data ingestion
— Indexing and partitioning data with analytics-specific data structures
- e.g., read raw graph data from text files, and transform into a graph data structure

— Often more expensive than analytics
— The same data (or derived data) is re-ingested frequently

- e.g.,, run multiple analytics on the same data, test different parameters, develop/debug analytics program

‘\V\Y/ﬂl‘

Lawrence Livermore National Laboratory
LLNL-PRES-817002

Background
Persistent Memory (PM) in HPC

= Substantial performance improvements and cost reductions

= Many HPC systems have PM devices to leverage them in large data processing with
reduced cost and power consumption

Comp node Supercomputers w/ PM
Byte addressable storage - Slerra .
(NVDIMM) - {psmapeapey ¢ Summit
« Aurora

Fugaku (RIKEN, Japan)

Global file system
(e.g., lustre, GPFS, VAST)

Once constructed, data structures can be re-analyzed and updated

beyond a single process lifecycle

1%

Lawrence Livermore National Laboratory ¥ % CASC NYSE 3

LLNL-PRES-817002 ‘*’.’.’0.“ ¢ National Nuclear Security Administration

Background
Store Data into PM

= Data serialization is expensive

— Dismantling and assembling large complex data structures is expensive in terms of performance and
programming cost

= Should leverage the file system
— Tremendous amount of powerful technologies
— We can support various persistent memory types

Can we allocate data into file directly and store the data as is

while providing transparent access to applications?

0% e

Lawrence Livermore National Laboratory £ S CASC NYSE 4

LLNL-PRES-817002 ‘*’.’.3.‘ * National Nucloar Security Administration

Background
Memory-mapped File Mechanism (mmap() system call)

Maps a file into a process's virtual memory (VM) space Process address space

(virtual memory)

mmap()
< File

(e.g., /mnt/ssd/file)

Applications can access mapping area as if it were
regular memory

Demand paging
— OS performs |/O on-demand by page granularity (e.g. 4 KB or 64 KB)
— OS keeps cache in DRAM (page cache)

= Can map a file bigger than the DRAM capacity Main Memory (DRAM)
App Transparent On-demand
E< access)' _F;a_g_e" <I/O by OS >
- i _c_a_c_h_e_ 1 file
—

CALHY .
Lawrence Livermore National Laboratory 2 “CASC NYSE 5
“2 :‘ ¢ National Nuclear Security Administration

LLNL-PRES-817002 R

Background
Memory-mapped File Mechanism (mmap() system call)

= Example
int fd = open("/mnt/ssd/file", O_RDWR); // Open a file

int size = 1024;
// Maps a file 1into main memory (1024 bytes)
int*x array = (intx)mmap(NULL, size,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

close(fd);
array[0] = 10;

msync(array, size, MS_SYNC); // Flush dirty pages into the file
munmap (array, size); // Close the mapping

mmap Is powerful; however,

calling mmap for every memory allocation is expensive

.) ’:’;0’.'{0.. N
Lawrence Livermore National Laboratory 2 “CASC NVYSE 6
LLNL-PRES-817002 00.’.’ .“ < National Nucloar Security Administration

S0

Meta]|[lwabuchi'19]
A C++ Allocator for Persistent Memory

= A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpf7s)
— Can leverage file system technologies

= Enables applications to allocate heap-based objects into PM,
just like main-memory

Can resume memory allocation work after restarting

Incorporates state-of-the-art allocation algorithms
— Some key ideas from SuperMallocKuszmaul15] gnd jemalloc

Employs the API developed by Boost.Interprocess (BIP)

— Useful for allocating C++ custom data structures in PM

Provides an efficient snapshot/versioning

CALHY
Lawrence Livermore National Laboratory 2 *CASC
LLNL-PRES-817002 0...’.’.;. X3

Main Memory

Memory (PM)

a

\ 4

7

N
Hea §
Allocator aIloca’Fc)or][Metall |

\

(DRAM)

Persistent

App data (files)

Persistent Memory Allocation using Metall

Create new data (create.cpp)

void main () { lAlIocate a manager object l Directory to store data
metall_mgr (, "/ssd/test");
intx n = metall_mgr. <int>("valo") ();
- 10: 1 Terminal
*n 103 Allocate and Store a key to retrieve the
1 construct an object data later $./create

$./open

Tl\/letall::manager's destructor synchronizes data with the PM (files)

10

Reattach the data (open.cpp)

void main () {

metall_mgr (, "/ssd/test");
int* n = metall_mgr. <int>("valo").first; .)
e { y)_ S Data is directly accessed in PM
std::cout << *n << std::endl; Retrieve data with its key (no serialization overhead)
+
Lawrence Livermore National Laboratory ':’:, CASC NYSE s

Metall with C++ Standard Template Library (STL) Container

A vector type with the STL allocator in Metall ~emplate parameters. of.the S1L vecter.contalne
© template< :
using vec_t = vector<int, metall::allocator<int>>; g class T,]

. class Allocator = std::allocator<T>§
. > class vector; '

Create new data (create.cpp)
void main () {

metall: :manager metall_mgr(metall::create_only, "/ssd/test");

vec_tx pvec = metall_mgr.construct<vec_t>("vec") (metall_mgr.get allocator());

pvec—>push_back(10) ; «— can yse it normally, including
} changing its capacity Arguments to vec_t's constructor

Reattach the data (open.cpp)
void main () {

metall: :manager metall_mgr(metall::open_only, "/ssd/test");

auto pvec = metall_mgr.find<vec_t>("vec").first; Metall follows the C++ standard
pvec->push_back(20); <— Can resume work, including style of using custom allocator
} changing its capacity (no directives, no change to compilers)

CALHY .
Lawrence Livermore National Laboratory % $CASC NVYSE o

LLNL-PRES-817002 SATR National Nuclear Security Administrati

Random Memory Placement

VM address space

1st execution

Ox007

VM address space
\

2nd execution

Ox007 OxCTA

= Metall does not assume that file(s) are mapped to the same VM addresses every time

How to fix the random memory placement issue?

PRI .
Lawrence Livermore National Laboratory % “CASC INVSE 10

LLNL-PRES-817002 ‘*’.’.’0.“ ¢ National Nuclear Security Administration

offset pointer

= An offset pointer holds the offset from itself to the object it points to

VM address space
\

Offset to

the object

u File

— Metall inherits offset_pointer implemented in Boost.Interprocess library

— The concept of non-raw pointer is being integrated in C++

Possible implementation Usage examples
template <class T> struct data { int n }; int n[2];
struct offset_pointer { data d; offset_ptr<int> p(n);
int64_t offset; offset_ptr<data> p(d); plO0] = 1;
. many methods ... p->n = 10; ++p;
} p = nullptr; -—p;

Works (almost) transparently with the raw pointer

°,

CALHY
Lawrence Livermore National Laboratory 2 *CASC
LLNL-PRES-817002 0.....’.;"0

NYSE 1

National Nuclear Security Adminis

Solutions To Random Memory Placement

Raw pointer
— Must be replaced with offset pointers

Reference, virtual function, and virtual base class
— Must be removed since raw pointers are used

STL Container

— Some implementations do not support offset pointers fully
— Boost.Container library is compatible with Metall

Static data members are not supported

BRI .
Lawrence Livermore National Laboratory 2 “CASC N Sﬁfjg‘ 12
S04 National Nuclear Security Administration

LLNL-PRES-817002 R

Persistence Policy — fine grained vs coarse grained

= Fine grained persistence policy
— Synchronizes data with persistent memory after every write operation
— |deal for transactional operations with recent byte-addressable PM
— Can incur an unnecessary overhead for non-transactional apps

= Coarse grained persistence policy
— Metall employs this policy
— Synchronizes data only when initiated by application
— Could cause data inconsistency if there is a crash before synchronizing

1%

Lawrence Livermore National Laboratory 2 Y CASC NUYSE 13
3 National Nuclear Security Administration

LLNL-PRES-817002 ’.’.tz‘.»

Snapshot/versioning in Metall

= Metall has two ways to make consistent data
— Metall manager's destructor
metall: :manger manager(...); // mmap() — Data is consistent
// Application does some work:
Data is inconsistent
// memory allocations and write operations

manager.~metall: :manager(); // msync() and munmap() — Data is consistent

— snapshot() creates a snapshot
metall: :manger manager(...);

// Application does some work

calls msync() and copies the mapped files to the '/mnt/ssd2/data’

ElEEr s shapeliei | it/ ssdz /s) '/mnt/ssd2/data’ is consistent if snapshot() finishes correctly

// Application does some work

manager.~metall: :manager();

How to implement a lightweight snapshot?
Lawrence Livermore National Laboratory ".:. CASC NVYSE 14

LLNL-PRES-817002 SATR National Nucloar Security Administration

Lightweight Snapshot/Versioning in Metall

= Calls msync() and copies backing-files to another location using reflink

= reflink
— copy-on-write file copy mechanism implemented in filesystems (e.g., XFS, ZFS, Btrfs)

Original file

Original data blocks <<‘i) ..

Copied (reflink) file

— In case reflink is not supported by the filesystem, Metall automatically falls back to a regular copy

Lightweight snapshot is useful for many situations:

e.g., incremental data processing and crash consistency (node failure, application bugs)

1%

Lawrence Livermore National Laboratory o % CASC NVYSE 15

LLNL-PRES-817002 ‘*’.’.’0.;‘ * National Nucloar Security Administration

Metall Internal Architecture

Key design points:
= Focus on relatively large size allocations
= Virtual memory is cheap in 64-bit machine, physical memory is dear Kuszmaul'ls]

= Leverage demand paging (physical memory is not consumed until accessed)

Simplify implementation & increase speed

1%

. . o, 74l
Lawrence Livermore National Laboratory 2 »CASC N A‘S@f&‘j 16
o National Nuclear Security Administration

LLNL-PRES-817002 R

Metall Internal Architecture

Application Heap Segment & Allocation Sizes

= Application heap segment
— All application data (allocated by Metall) are stored in this region
— Reserves a large continuous VM region in the process's address space
— Maps backing files to the VM region on demand

1 2 3 4
(empty) |
Y Y
Chunk for small allocations Chunks of a large allocation Chunk for small
(consists of the same size slots) allocations

= Small size category (e.g., <= 1 MB)
— Rounded up to the nearest internal allocation size
— Internal sizes are designed to keep internal fragmentations < 25%Supermaliocijjemalloc]

= Large size category (e.g.. > 1 MB)
— Rounded up to the nearest power of 2
— Designed not to waste physical memory much

- Thanks to demand paging, untouched pages do not consume physical memory
« Worst case: 1.6% when allocating TMB + 1 B with 4 KB page

R

Wi,
Lawrence Livermore National Laboratory 2 *CASC
LLNL-PRES-817002 "”"f:’"’

NYSE 17

al Nuclear Security Admini

Metall Internal Architecture
Memory Allocation Management Data (SLUB allocator)

= Allocated in DRAM, separating from application heap segment to improve data locality
— Unserialized/serialized when Metall's constructor/destructor is called

— Employs state-of-the-art allocation algorithms

— Free-slot caches
- CPU core level to improve multi-thread performance

Management Data (constructed in DRAM)

— e e mm mm e mm m mm mm mm mm m mm mm e o mm o mm mm mm mm mm mm mm mm mm mm mm e mm mm mm mm e mm mm mm mm mm mm mm mm mm mm mm e mm mm e mm mm mm mm e mm mm e mm e mm e mm e e Em e e o =

Bin Directory (non-full chunks)
(only for small allocations)

/ Chunk Directory
chunkno. 0 1 2 3 4

Name Directory °,
(key-value store)

#of occupied slots =3

Stack or
priority queue

| 1
| |
i cee binno. 0 1 2 3 4 :

|
1 eo o |
: chunk info /1 N\ Name Offset '
: . bin no. =19 L AN |
! chunk info - ‘ CH10 Ha "datal" | OxF32E0 | !
| "bin no. = 0 chunk type = large |
I "vec-1" 0xF3D40 I
i chunk type = small e e i
| |
| |
| |
| |
| |
| 1

*slot occupancy bitset _
L | Jﬂ] Multi-layer
. > H o
\ pointer TIIESS Bitset : . :
\ o o /
~ N e e o o o e e e e e e o e e e o e e e e e e e e e e e o e e e e e e e e o e e e o o e e e o e e e e e e e e e e o e e e o e e e e o e o o o =
Lawrence Livermore National Laboratory & ‘, CASC

LLNL-PRES-817002

g
"

‘000t
DAL N
Y

Evaluation
Graph Data Structure

= Adjacency list (one of de-facto standard graph data structures)

Multi-banked concurrent adjacency list
Graph L

Adjacency list
(dynamically grows)

M)
Bank-0 :
) (sub adjacency-list) - Dynamic array (vector)
® g 1 1 1 1 1
o €
6 G S -OI T T T 1
2 g < £ Dynamic array (vector)
~al—1112 = Bank-1 53 haliatetieg
§ 0 > (sub adjacency-list) T %
ES t ~ T T T T
S |1 0 < Dynamic array (vector)
o : ~—/ 1 1 1 1
12
S RN 0 N Bank-2
c% ‘ | (sub adjacency-list)
'
Neighbor vertex IDs @ Mutex
. .o Bank No = MOD(hash(source vertex ID), #of banks
Vertex ID is a 64-bitint (............ (......................................) f) ..
Lawrence Livermore National Laboratory " .:, CASC NVYSE 19

LLNL-PRES-817002 RATHE O it ST At Se B

Evaluation
Adjacency List Implementation

Adjacency-list with the default allocator (std::allocator)

class AdjacencylList {
Adjacency list

(dynamically grows) using edgeVec = vector<int>;
) — using vertexTable = unordered_map<int, edgeVec>;
- Dynamic array (vector) vertexTable table;
| | | | |
5 E | .
[oRe} — AdjacencylList() : table {}
c s Dynamic array (vector)
(n'o 1 1 1]
£ void addEdge(int source, 1int target) {
= — T table[source].push_back(target);
Dynamic array (vector) 1
_) | | | |
} *ksome unimportant details are omitted

Lawrence Livermore National Laboratory
LLNL-PRES-817002

R
:"," * ‘:‘ ' (758

R4 . 4

..+ CASC A"y 20
RV 204

‘e e National Nuclear Security Administration

X3
35

Evaluation
Allocator-Aware Adjacency List

= Adjacency list with a custom allocator

template <class Alloc>
class Adjacencylist {

using edgeVec = vector<int, Alloc::rebind<int>::other>;

using tableAlloc = Alloc::rebind<pair<int, edgeVec>>::other;
using vertexTable = unordered_map<int, edgeVec, /* ... %/,
tableAlloc>;

vertexTable table;
AdjacencylList(Alloc alloc) : table(alloc) {}

// No changes to this method
void addEdge(int source, int target) {}

} *)ksome unimportant details are omitted

Changed to an allocator-aware data structure, following the C++ standard style

Lawrence Livermore National Laboratory £7% CASC A‘SQ“”

LLNL-PRES-817002 ’o. eiaar set ¥ ATk ST

Evaluation

Allocate Adjacency List Using Metall

using AdjList = AdjacencylList<metall::manager::allocator_type<std::byte>>;

void main () {
metall::manager metall_mgr (metall::create_only, "/ssd/graph");

autox adj = metall_mgr.construct<AdjList>("graph'")
(metall_mgr.get_allocator());

adj->addEdge (1, 2);
}

CALHY .
Lawrence Livermore National Laboratory 2 “CASC NVYSE 22
“2 :"" National Nuclear Security Administration

LLNL-PRES-817002 R

Evaluation
Machine Configuration

= Used two single-node machines at LLNL

EPYC (conventional PM device)

Optane (oyte addressable PM device)

Storage NVMe SSD Storage Intel Optane DC Persistent
DRAM 556 GB Memory (App Direct Mode + DAX)
CPU hread orAn 192 G5
AMD EPYC CPU x 2 (96 threads) CPU Intel Skylake x 2 (96 threads)

PRI
Lawrence Livermore National Laboratory 2 *CASC

LLNL-PRES-817002 "0...3;..

\ / o)
Aoy 23
National Nuclear Security Administration

Evaluatior_1 Result _
Dynamic Graph Construction

shared-memory
multi-thread

= Baselines (memory allocators that use file-backed mmap underneath)
— Boost.Interprocess
- Uses a single tree structure for memory allocation management
— memkind (PMEM kind)

- Provides an allocator built on top of jemalloc
- Cannot reattach data (uses PM as extended volatile memory)

—*— Boost.Interprocess (BIP) +memkind (PMEM kind) -e-Metall

. EPYC (NVMe SSD) Optane (byte-addressable PM)
S 8 10
£
4o 6 8 \‘ﬂ
() (@] T
m| © 4
Ll 5 S\
qua —r—————— 2
7 o 0
< 25 26 27 28 29 30 25 26 27 28 29 30

Graph SCALE (the number of inserted edges = 25CALE x 32)

(SCALE 30 is larger than DRAM)

CALHY
Lawrence Livermore National Laboratory 2 *CASC
LLNL-PRES-817002 0...’.’.;. X3

Vetall provides persistent
memory features whereas
PMEM kind does not.

NYSE 24

al Nuclear Security Administration

Evaluation Result _ _
Incremental Graph Construction, Taking Snapshots

*reflink: copy-on-write file copy

= Workload - - No snapshot -a Normal copy -e reflink copy
— Take a snapshot after inserting each chunk (64M edges) m 400
— Insert edges into the original grap e :
ot T O 300 reflink used 83% less space
Edges 7 J] » to keep all snapshots
1 l 3 l 5 l D 200 ‘
-_—)
Graph @ @ 8 100
S~———— O
2 l 4 l 6 l | & o ®
— | 1 3 5 7 9 111315 17 19 21 23 25
Snhapshots B Ej ‘ o5
- R = reflink is 8X faster on average
Time —= 20
o me >
= Dataset g 1
— Wikipedia page link insertions (1.8B edges) = 0
(curated by parsing English Wikipedia's revision history) a . H. t H. l
o)
= Machine © 0 .LLI_I.I.|. Lhlh llll
— EPYC machine (NVMe SSD with XFS filesystem) s 5 7 9 113 15 1719 21 23 25
[teration
Lawrence Livermore National Laboratory ".:. CASC NVYSE 25

LLNL-PRES-817002 ‘*’.’.3.‘ ‘ National Nucloar Security Administration

Related Work

= Heap allocators (e.g., jemalloc, tcmalloc, malloc implementations)
— Many studies have been conducted and showed notable results
— Cannot persistently store their internal structures

= Persistent Memory Allocator

— NVMalloc
« Allocates memory on a distributed non-volatile memory (NVM) storage system
« Creates a file per memory allocation request

— libpmemobj (in PMDK)
- Employs a fine-grained persistence policy (ideal for transactional operations)

— Boost.Interprocess
- Designed for interprocess communication (not designed as a persistent memory)

= Persistent Data Store

— Hierarchical Data Format (HDF)

- Allows applications to store data with portable formats
- Metall is designed as a lightweight tool by limiting data portability

Metall is designed as a lightweight and high-performance persistent

memory allocator with the coarse-grained persistence policy
Lawrence Livermore National Laboratory ".:. CASC INVYSE 26

LLNL-PRES-817002 SATR National Nucloar Security Administration

Summary (1/2)
Metall

A memory allocator built on top of a memory mapping region e —

— Designed to work on any devices with file system support (including tmpfs) .
| Application
= Enables applications to allocate heap-based objects into PM,) T
Just like main-memory Allocator Notal
= Rich API for custom C++ data structures C Man
Memory i Page cache |
- Employs the coarse-grained consistency model - ORAM I “““ /
; mmap()
= Provides an efficient snapshot/versioning oo [Appdata
NG Y (files) ,
= Incorporates state-of-the-art allocation algorithms e
Lawrence Livermore National Laboratory ':’:, CASC N‘VS&_{%‘ 27

Summary (2/2)
Persistent Data Centric Computing

Data Analytics Workflow Development/Debug Workflow

Analytics 1 Analytics 2

Data ingestion Analytics Data ingestion Analytics Data ingestion Debug Data ingestion Debug
5 4 @ 5 4 @ SN 5 0 [

Persistent Data

. Analytics 1 Deb
Persistent Data i
@ >% - </>
: .
ingestion Data
Analytics 2 ingestion
Debug

Metall enables applications to efficiently implement and to fully leverage

persistent data centric computing mode/

1493e, X
Lawrence Livermore National Laboratory % $CASC NVYSE 28

LLNL-PRES-817002 National Nucloar Security Administration

35

CASC

Center for Applied
Scientific Computing Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or

. ~ otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

Lawrence leermore United States government or Lawrence Livermore National Security, LLC. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States government or

National Laboratory Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement

purposes.

