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Background
Large-scale Data Analytics

§ High volume data analytics is one of the key challenges in exascale

§ Data ingestion
— Indexing and partitioning data with analytics-specific data structures

• e.g., read raw graph data from text files, and transform into a graph data structure

— Often more expensive than analytics
— The same data (or derived data) is re-ingested frequently

• e.g., run multiple analytics on the same data, changing parameters; develop/debug analytics program

Raw Data Data Structure

Data Ingestion
Analytics

Data Ingestion time >> Analysis time
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Background
Persistent Memory (PM) in HPC

§ Substantial performance improvements and cost reductions in
non-volatile random-access memory (NVRAM)

§ Many HPC systems have various types of NVRAM devices today 

Byte addressable storage
(NVDIMM)

Comp node

SSD, HDD

Global file system
(e.g., lustre, GPFS, VAST)

.  .  .

These devices offer cost-effective ways of persistently storing large 
datasets with efficient means of accessing the data for processing

Supercomputers w/ PM
• Sierra
• Summit
• Aurora
• Mammoth
• Fugaku (RIKEN, Japan)
.
.
.
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Background
Store Data into PM

§ Data serialization is expensive
— Dismantling and assembling large complex data structures is expensive in terms of performance and 
programming cost

§ Should leverage the file system
— Tremendous amount of powerful technologies
— We can support various persistent memory types

Can we allocate data into file directly and store the data as is
while providing transparent access to applications?
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§ Maps a file into a process's virtual memory (VM) space

§ Applications can access mapping area as if it were 
regular memory

§ Demand paging
— OS performs I/O on-demand by page granularity (e.g., 4 KB or 64 KB)
— OS keeps cache in DRAM (page cache)

§ Can map a file bigger than the DRAM capacity

Background
Memory-mapped File Mechanism (mmap() system call)

Main Memory (DRAM)

Process address space
(virtual memory)

Text

Stack

Heap

File
mmap()

Mapped
file

On-demand
I/O by OS

Page 
cache

App Transparent
access

(e.g., /mnt/ssd/file)
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§ Example

Background
Memory-mapped File Mechanism (mmap() system call)

mmap is powerful; however,
calling mmap for every memory allocation is expensive

int fd = open("/mnt/ssd/file", O_RDWR); // Open a file

int size = 1024;
// Maps a file into main memory (1024 bytes)
int* array = (int*)mmap(NULL, size,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

close(fd);

array[0] = 10;

msync(array, size, MS_SYNC); // Flush dirty pages into the file
munmap(array, size); // Close the mapping
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§ A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpfs)
— Can leverage file system technologies

§ Enables applications to allocate heap-based objects into PM,
just like main-memory

§ Can resume memory allocation work after restarting

§ Incorporates state-of-the-art allocation algorithms
— Some key ideas from SuperMalloc[Kuszmaul'15] and jemalloc

§ Employs the API developed by Boost.Interprocess (BIP)
— Useful for allocating C++ custom data structures in PM

Metall
A C++ Allocator for Persistent Memory

App data (files)

Main Memory
(DRAM)

Persistent
Memory (PM)

Page 
cache

Application

MetallHeap 
allocator

App
data

mmap()

Allocator

[github.com/LLNL/metall]
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Persistent Memory Allocation using Metall

void main () {

metall::manager metall_mgr(metall::create_only, "/ssd/test");

int* n = metall_mgr.construct<int>("val0")();

*n = 10;

}

void main () {

metall::manager metall_mgr(metall::open_only, "/ssd/test");

int* n = metall_mgr.find<int>("val0").first;

std::cout << *n << std::endl;

}

Reattach the data (open.cpp)

Create new data (create.cpp)

$ ./create
$ ./open
10

TerminalStore a key to retrieve the 
data later

Allocate and 
construct an object

Retrieve data with its key

Metall::manager's destructor synchronizes data with the PM (files)

Directory to store dataAllocate a manager object

Data is directly accessed in PM
(no serialization overhead)
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Metall with C++ Standard Template Library (STL) Container

void main () {

metall::manager metall_mgr(metall::create_only, "/ssd/test");

vec_t* pvec = metall_mgr.construct<vec_t>("vec")(metall_mgr.get_allocator());
pvec->push_back(10);
}

void main () {

metall::manager metall_mgr(metall::open_only, "/ssd/test");

auto pvec = metall_mgr.find<vec_t>("vec").first;
pvec->push_back(20);
}

Reattach the data (open.cpp)

Create new data (create.cpp)

using vec_t = vector<int, metall::allocator<int>>;
A vector type with the STL allocator in Metall

Arguments to vec_t's constructor
Can use it normally, including 
changing its capacity

Template parameters of the STL vector container
template<

class T,
class Allocator = std::allocator<T>

> class vector;

Can resume work, including 
changing its capacity

Metall follows the C++ standard 
style of using custom allocator
(no directives, no change to compilers)
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§ Metall does not assume that file(s) are mapped to the same VM addresses every time

Random Memory Placement

VM address space

P
oi
nt
er

0xC1A

0x007

VM address space

P
oi
nt
er

O
b
je
ct

0x007

1st execution

2nd execution

File

How to fix the random memory placement issue?

O
b
je
ct
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§ An offset pointer holds the offset from itself to the object it points to

— Metall inherits offset_pointer implemented in Boost.Interprocess library (BIP)
— BIP's offset pointer works (almost) transparently with the raw pointer
— The concept of non-raw pointer is being integrated in C++ 

offset pointer

VM address space
of
fs
et

p
oi
nt
er

O
b
je
ctOffset to 

the object

int n[2];
offset_ptr<int> p(n);
p[0] = 1;
++p;
--p;

template <class T>
struct offset_pointer {

int64_t offset;
... many methods ...

}

struct data { int n };
data d;
offset_ptr<data> p(&d);
p->n = 10;
p = nullptr;

Possible implementation

Usage examples
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§ Raw pointer
— Must be replaced with offset pointers

§ Reference, virtual function, and virtual base class
— Must be removed since raw pointers are used

§ STL Container
— Some implementations do not support offset pointers fully
— Boost.Container library is compatible with Metall

§ Static data members are not supported

Solutions To Random Memory Placement
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Persistence Policy — fine grained vs coarse grained 

§ Fine grained persistence policy
— Synchronizes data with persistent memory after every write operation
— Ideal for transactional operations with recent byte-addressable PM
— Can incur an unnecessary overhead for non-transactional apps

§ Coarse grained persistence policy
— Metall employs this policy
— Synchronizes data only when initiated by application
— Could cause data inconsistency if there is a crash before synchronizing
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Coarse grained persistence model in Metall

metall::manger manager(metall::open, ...); // mmap()

// Application does some work:

// memory allocations and write operations

manager.~metall::manager(); // msync() and munmap()

Data is consistent

Data could be inconsistent

Data is consistent

§ Consistent mark
— Metall leaves a mark (file) at the end of its destructor
— The mark is deleted when Metall opens the data

§ Read-only open mode
— Writing to data allocated in Metall space causes a segmentation fault

• Metall maps files with the read-only mode in mmap()
— Metall does not delete the consistent mark
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§ Another way to create a consistent data

Snapshot/versioning in Metall

metall::manger manager(...);

// Application does some work

manager.snapshot('/mnt/ssd2/data');

// Application does some work

manager.~metall::manager(); 

• calls msync() and copies the mapped files to the '/mnt/ssd2/data'
• '/mnt/ssd2/data' is consistent if snapshot() finishes correctly
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Snapshot/versioning in Metall (cont'd)

metall::manager manager(metall::create_only, "/ssd/dir");

// Allocate an int object and assign 10
auto *n = manager.construct<int>("n")();
*n = 10;

manager.snapshot("/ssd/snapshot");

*n = 20;

// Assume that a fatal error happens here

§ Demonstration of Metall's snapshot

// 'flag' is false
bool flag = metall::manager::consistent("/ssd/dir");

if (metall::manager::consistent("/ssd/snapshot")) {

// Open the snapshot
metall::manager manager(metall::open_only, "/ssd/snapshot");

int *n = manager.find<int>("n").first; // reattach 'n'
std::cout << n; // 'n' is 10

}

create.cpp open.cpp



17
LLNL-PRES-817002

Metall Internal Architecture
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Key Design Points

§ Focus on relatively large size allocations

§ Virtual memory is cheap in 64-bit machine, physical memory is dear [Kuszmaul'15]

§ Leverage demand paging (physical memory is not consumed until accessed)

Simplify implementation & increase speed
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Metall Internal Architecture
Internal Allocation Sizes

§ Small size category (e.g., <= 1 MB)
— Rounded up to the nearest internal allocation size
— Internal sizes are designed to keep internal fragmentations < 25%[Supermalloc][jemalloc]

§ Large size category (e.g., > 1 MB)
— Rounded up to the nearest power of 2
— Designed not to waste physical memory much

• Thanks to demand paging, untouched pages do not consume physical memory
• Worst case: 1.6% when allocating 1MB + 1 B with 4 KB page
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Metall Internal Architecture
Application Heap Segment & Allocation Sizes

§ Application heap segment
— All application data (allocated by Metall) are stored in this region
— Reserves a large (e.g., a few TB) continuous VM region in the process's address space
— Maps backing files to the VM region on demand

(empty) . . .

Chunks of a large allocationChunk for small allocations
(consists of the same size slots)

0 1 2 3 4Chunk no.
Dynamically 
grows

Chunk for small 
allocations

. . . . . .

The default chunk size is 2 MB
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Metall Internal Architecture
Memory Allocation Management Data (SLUB allocator)

§ Allocated in DRAM, separating from application heap segment to improve data locality
— Unserialized/serialized when Metall's constructor/destructor is called
— Employs state-of-the-art allocation algorithms
— Free-slot caches

• CPU core level to improve multi-thread performance

voi
d*

(empty) . . .

Chunk Directory

Chunks of a large allocation

0 1 2 3 4chunk no.

Chunk for small allocations
(consists of the same size slots)

0 1 2 3 4Chunk no.

Management Data (constructed in DRAM)

0 1 2 3 4bin no.

CH10

CH0

. 
. 

.

Bin Directory (non-full chunks)
(only for small allocations)

St
ac

k 
or

pr
io

rit
y 

qu
eu

e
Application Data (stored in Persistent Memory as files and mapped to DRAM)

CH4

CH9

Dynamically 
grows

Chunk for small 
allocations

chunk info
bin no. = 0
chunk type = small
#of occupied slots = 3
*slot occupancy bitset

. . .

. . .

. . .

chunk info
bin no. = 19
chunk type = large

Multi-layer
Bitset

. 
. 

.

. . .

pointer

. . .

Name Directory
(key-value store)

Name Offset

"data1" 0xF32E0

"vec-1" 0xF3D40

. . .
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§ Calls msync() and copies backing-files to another location using reflink

§ reflink
— copy-on-write file copy mechanism implemented in filesystems (e.g., XFS, ZFS, Btrfs)

— In case reflink is not supported by the filesystem, Metall automatically falls back to a regular copy

Snapshot/Versioning in Metall

Modified data blockOriginal data  blocks

Original file

Copied (reflink) file
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Evaluation
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Evaluation
Graph Construction Benchmark

§ A necessary step before performing actual graph analytics

§ Partition and ingest raw graph data into a memory access efficient data structure

§ Often more expensive graph analytics step

Graph

0
1
2

1 2

0

0

0

1

2

Neighbor vertex IDs

S
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e 
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ex
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s

Vertex ID is a 64-bit int

Graph Data Structure

{0, 1}
{0, 2}

Raw data
(edge list)

Convert
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Evaluation
Graph Data Structure

§ Adjacency list (one of de-facto standard graph data structures)

H
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h 
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_m
ap
) Dynamic array (vector)

0
1
2

1 2

0

0

Bank-0
(sub adjacency-list)

A
rr
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 (
fi
xe
d
)

Adjacency list
(dynamically grows)

Multi-banked concurrent adjacency list

Mutex

Bank No = MOD(hash(source vertex ID), #of banks)

Neighbor vertex IDs

S
ou
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e 
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ex
 ID
s

Vertex ID is a 64-bit int

Bank-1
(sub adjacency-list)

Bank-2
(sub adjacency-list)

Dynamic array (vector)

Dynamic array (vector)
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Evaluation
Adjacency List Implementation

class AdjacencyList {

using edgeVec = vector<int>;
using vertexTable = unordered_map<int, edgeVec>;
vertexTable table;

AdjacencyList() : table {}

void addEdge(int source, int target) {
table[source].push_back(target);

}

}

Adjacency-list with the default allocator (std::allocator)

H
as
h 
ta
b
le
 

(u
no
rd
er
ed
_m
ap
) Dynamic array (vector)

Adjacency list
(dynamically grows)

Dynamic array (vector)

Dynamic array (vector)

＊some unimportant details are omitted
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Evaluation
Allocator-Aware Adjacency List

§ Adjacency list with a custom allocator

template <class Alloc = std::allocator<std::byte>>
class AdjacencyList {

using edgeVec = vector<int, Alloc::rebind<int>::other>;

using tableAlloc = Alloc::rebind<pair<int, edgeVec>>::other;
using vertexTable = unordered_map<int, edgeVec, /* ... */, tableAlloc>;
vertexTable table;

AdjacencyList(Alloc alloc = Alloc()) : table(alloc) {}

// No changes to this method
void addEdge(int source, int target) {}

}

Changed to an allocator-aware data structure, following the C++ standard style
(no code depends on Metall)
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Evaluation
Allocate Adjacency List Using Metall

using AdjList = AdjacencyList<metall::manager::allocator_type<std::byte>>;

metall::manager metall_mgr(metall::create_only, "/ssd/graph");

auto* adj = metall_mgr.construct<AdjList>("graph")
(metall_mgr.get_allocator());

adj->addEdge(1, 2);

auto* adj = new AdjacencyList();

adj->addEdge(1, 2);

With std::allocator (allocate in DRAM, no persistency)

With Metall

The same data structure can be used with std::allocator
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Evaluation
Machine Configuration

§ Used two single-node machines at LLNL

EPYC (conventional PM device)
Storage NVMe SSD

DRAM 256 GB

CPU AMD EPYC CPU x 2
(96 threads)

Optane (byte addressable PM device)
Storage Intel Optane DC Persistent 

Memory (App Direct Mode + DAX)
DRAM 192 GB
CPU Intel Skylake x 2 (96 threads)
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§ Baselines (memory allocators that use file-backed mmap underneath)
— Boost.Interprocess

• Uses a single tree structure for memory allocation management
— memkind (PMEM kind)

• Provides an allocator built on top of jemalloc
• Cannot reattach data (uses PM as extended volatile memory)

Evaluation Result
Dynamic Graph Construction

B
et
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r

(SCALE 30 is larger than DRAM)

Metall provides persistent 
memory features whereas 
PMEM kind does not
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d
g
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/s
 (m
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n)

EPYC (NVMe SSD) Optane (byte-addressable PM)

Graph SCALE (the number of inserted edges = 2SCALE x 32)

shared-memory
multi-thread

Boost.Interprocess (BIP) memkind (PMEM kind)   Metall
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§ Heap allocators (e.g., jemalloc, tcmalloc, malloc implementations)
— Many studies have been conducted and showed notable results
— Cannot persistently store their internal structures

§ Persistent Memory Allocator
— NVMalloc

• Allocates memory on a distributed non-volatile memory (NVM) storage system 
• Creates a file per memory allocation request 

— libpmemobj (in PMDK)
• Employs a fine-grained persistence policy (ideal for transactional operations)

— Boost.Interprocess
• Designed for interprocess communication (not designed as a persistent memory)

§ Persistent Data Store
— Hierarchical Data Format (HDF)

• Allows applications to store data with portable formats
• Metall is designed as a lightweight tool by limiting data portability

Related Work

Metall is designed as a lightweight and high-performance persistent 
memory allocator with the coarse-grained persistence policy
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§ A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpfs)

§ Enables applications to allocate heap-based objects into PM,
just like main-memory

§ Rich API for custom C++ data structures

§ Employs the coarse-grained consistency model 

§ Provides snapshot/versioning capabilities

§ Incorporates state-of-the-art allocation algorithms

Summary (1/2)
Metall

App data
(files)

Main 
Memory
(DRAM)

Persistent
Memory 
(PM)

Page cache

Application

Metall

mmap()

Allocator
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Summary (2/2)
Metall: A Persistent Memory Allocator For Data-Centric Analytics

Metall enables applications to efficiently leverage persistent memory for 
data-centric computing

Data ingestion Analytics

Persistent Data

Data Analytics Workflow Development/Debug Workflow

Data ingestion Analytics

PM
Data 

ingestion

Analytics 1

Analytics 2

Data ingestion Debug Data ingestion Debug

Persistent Data
PM

Data 
ingestion

Analytics 1 Analytics 2

Debug

Debug

Snapshot
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