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Background
Large-scale Data Analytics

= High volume data analytics is one of the key challenges in exascale

= Data ingestion
— Indexing and partitioning data with analytics-specific data structures
- e.g., read raw graph data from text files, and transform into a graph data structure

— Often more expensive than analytics
— The same data (or derived data) is re-ingested frequently

- e.g.,, run multiple analytics on the same data, test different parameters, develop/debug analytics program
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Background
Persistent Memory (PM) in HPC

= Substantial performance improvements and cost reductions

= Many HPC systems have PM devices to leverage them in large data processing with
reduced cost and power consumption

Comp node Supercomputers w/ PM
Byte addressable storage - Slerra .
(NVDIMM) - {psmapeapey ¢ Summit
« Aurora

Fugaku (RIKEN, Japan)

Global file system
(e.g., lustre, GPFS, VAST)

Once constructed, data structures can be re-analyzed and updated

beyond a single process lifecycle
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Background
Store Data into PM

= Data serialization is expensive

— Dismantling and assembling large complex data structures is expensive in terms of performance and
programming cost

= Should leverage the file system
— Tremendous amount of powerful technologies
— We can support various persistent memory types

Can we allocate data into file directly and store the data as is

while providing transparent access to applications?
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Background
Memory-mapped File Mechanism (mmap() system call)

Maps a file into a process's virtual memory (VM) space Process address space

(virtual memory)

mmap()
< File

(e.g., /mnt/ssd/file)

Applications can access mapping area as if it were
regular memory

Demand paging
— OS performs |/O on-demand by page granularity (e.g. 4 KB or 64 KB)
— OS keeps cache in DRAM (page cache)

= Can map a file bigger than the DRAM capacity Main Memory (DRAM)
App Transparent On-demand
E< access )' _F;a_g_e" <I/O by OS >
- i _c_a_c_h_e_ 1 file
—
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Background
Memory-mapped File Mechanism (mmap() system call)

= Example
int fd = open("/mnt/ssd/file", O_RDWR); // Open a file

int size = 1024;
// Maps a file 1into main memory (1024 bytes)
int*x array = (intx)mmap(NULL, size,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

close(fd);
array[0] = 10;

msync(array, size, MS_SYNC); // Flush dirty pages into the file
munmap (array, size); // Close the mapping

mmap Is powerful; however,

calling mmap for every memory allocation is expensive
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Meta]|[lwabuchi'19]
A C++ Allocator for Persistent Memory

= A memory allocator built on top of a memory mapping region
— Designed to work on any devices with file system support (including tmpf7s)
— Can leverage file system technologies

= Enables applications to allocate heap-based objects into PM,
just like main-memory

Can resume memory allocation work after restarting

Incorporates state-of-the-art allocation algorithms
— Some key ideas from SuperMallocKuszmaul15] gnd jemalloc

Employs the API developed by Boost.Interprocess (BIP)

— Useful for allocating C++ custom data structures in PM

Provides an efficient snapshot/versioning
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Persistent Memory Allocation using Metall

Create new data (create.cpp)

void main () { lAlIocate a manager object l Directory to store data
metall_mgr ( , "/ssd/test");
intx n = metall_mgr. <int>("valo") ();
- 10: 1 Terminal
*n 103 Allocate and Store a key to retrieve the
1 construct an object data later $ ./create

$ ./open

Tl\/letall::manager's destructor synchronizes data with the PM (files)

10

Reattach the data (open.cpp)

void main () {

metall_mgr ( , "/ssd/test");
int* n = metall_mgr. <int>("valo").first; . )
e { y )_ S Data is directly accessed in PM
std::cout << *n << std::endl; Retrieve data with its key (no serialization overhead)
+
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Metall with C++ Standard Template Library (STL) Container

A vector type with the STL allocator in Metall ~emplate parameters. of.the S1L vecter.contalne
© template< :
using vec_t = vector<int, metall::allocator<int>>; g class T, ]

. class Allocator = std::allocator<T>§
. > class vector; '

Create new data (create.cpp)
void main () {

metall: :manager metall_mgr(metall::create_only, "/ssd/test");

vec_tx pvec = metall_mgr.construct<vec_t>("vec") (metall_mgr.get allocator());

pvec—>push_back(10) ; «— can yse it normally, including
} changing its capacity Arguments to vec_t's constructor

Reattach the data (open.cpp)
void main () {

metall: :manager metall_mgr(metall::open_only, "/ssd/test");

auto pvec = metall_mgr.find<vec_t>("vec").first; Metall follows the C++ standard
pvec->push_back(20); <— Can resume work, including style of using custom allocator
} changing its capacity (no directives, no change to compilers)
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Random Memory Placement

VM address space

1st execution

Ox007

VM address space
\

2nd execution

Ox007 OxCTA

= Metall does not assume that file(s) are mapped to the same VM addresses every time

How to fix the random memory placement issue?

PRI .
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offset pointer

= An offset pointer holds the offset from itself to the object it points to

VM address space
\

Offset to

the object

u File

— Metall inherits offset_pointer implemented in Boost.Interprocess library

— The concept of non-raw pointer is being integrated in C++

Possible implementation Usage examples
template <class T> struct data { int n }; int n[2];
struct offset_pointer { data d; offset_ptr<int> p(n);
int64_t offset; offset_ptr<data> p(d); plO0] = 1;
. many methods ... p->n = 10; ++p;
} p = nullptr; -—p;

Works (almost) transparently with the raw pointer

°,
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Solutions To Random Memory Placement

Raw pointer
— Must be replaced with offset pointers

Reference, virtual function, and virtual base class
— Must be removed since raw pointers are used

STL Container

— Some implementations do not support offset pointers fully
— Boost.Container library is compatible with Metall

Static data members are not supported
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Persistence Policy — fine grained vs coarse grained

= Fine grained persistence policy
— Synchronizes data with persistent memory after every write operation
— |deal for transactional operations with recent byte-addressable PM
— Can incur an unnecessary overhead for non-transactional apps

= Coarse grained persistence policy
— Metall employs this policy
— Synchronizes data only when initiated by application
— Could cause data inconsistency if there is a crash before synchronizing

1%
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Snapshot/versioning in Metall

= Metall has two ways to make consistent data
— Metall manager's destructor
metall: :manger manager(...); // mmap() — Data is consistent
// Application does some work:
Data is inconsistent
// memory allocations and write operations

manager.~metall: :manager(); // msync() and munmap() — Data is consistent

— snapshot() creates a snapshot
metall: :manger manager(...);

// Application does some work

calls msync() and copies the mapped files to the '/mnt/ssd2/data’

ElEEr s shapeliei | it/ ssdz /s ) '/mnt/ssd2/data’ is consistent if snapshot() finishes correctly

// Application does some work

manager.~metall: :manager();

How to implement a lightweight snapshot?
Lawrence Livermore National Laboratory ".:. CASC NVYSE 14

LLNL-PRES-817002 SATR National Nucloar Security Administration




Lightweight Snapshot/Versioning in Metall

= Calls msync() and copies backing-files to another location using reflink

= reflink
— copy-on-write file copy mechanism implemented in filesystems (e.g., XFS, ZFS, Btrfs)

Original file

Original data blocks <<‘i) ..

Copied (reflink) file

— In case reflink is not supported by the filesystem, Metall automatically falls back to a regular copy

Lightweight snapshot is useful for many situations:

e.g., incremental data processing and crash consistency (node failure, application bugs)

1%
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Metall Internal Architecture

Key design points:
= Focus on relatively large size allocations
= Virtual memory is cheap in 64-bit machine, physical memory is dear Kuszmaul'ls]

= Leverage demand paging (physical memory is not consumed until accessed)

Simplify implementation & increase speed

1%
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Metall Internal Architecture

Application Heap Segment & Allocation Sizes

= Application heap segment
— All application data (allocated by Metall) are stored in this region
— Reserves a large continuous VM region in the process's address space
— Maps backing files to the VM region on demand

1 2 3 4
(empty) |
Y Y
Chunk for small allocations Chunks of a large allocation Chunk for small
(consists of the same size slots) allocations

= Small size category (e.g., <= 1 MB)
— Rounded up to the nearest internal allocation size
— Internal sizes are designed to keep internal fragmentations < 25%Supermaliocijjemalloc]

= Large size category (e.g.. > 1 MB)
— Rounded up to the nearest power of 2
— Designed not to waste physical memory much

- Thanks to demand paging, untouched pages do not consume physical memory
« Worst case: 1.6% when allocating TMB + 1 B with 4 KB page

R
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Metall Internal Architecture
Memory Allocation Management Data (SLUB allocator)

= Allocated in DRAM, separating from application heap segment to improve data locality
— Unserialized/serialized when Metall's constructor/destructor is called

— Employs state-of-the-art allocation algorithms

— Free-slot caches
- CPU core level to improve multi-thread performance

Management Data (constructed in DRAM)

— e e mm mm e mm m mm mm mm mm m mm mm e o mm o mm mm mm mm mm mm mm mm mm mm mm e mm mm mm mm e mm mm mm mm mm mm mm mm mm mm mm e mm mm e mm mm mm mm e mm mm e mm e mm e mm e e Em e e o =

Bin Directory (non-full chunks)
(only for small allocations)

/ Chunk Directory
chunkno. 0 1 2 3 4

Name Directory °,
(key-value store)

#of occupied slots =3

Stack or
priority queue

| 1
| |
i cee binno. 0 1 2 3 4 :

|
1 eo o |
: chunk info /1 N\ Name Offset '
: . bin no. =19 L AN |
! chunk info - ‘ CH10 Ha "datal" | OxF32E0 | !
| "bin no. = 0 chunk type = large |
I "vec-1" 0xF3D40 I
i chunk type = small e e i
| |
| |
| |
| |
| |
| 1

*slot occupancy bitset _
L | Jﬂ] Multi-layer
. > H o
\ pointer TIIESS Bitset : . :
\ o o /
~ N e e o o o e e e e e e o e e e o e e e e e e e e e e e o e e e e e e e e o e e e o o e e e o e e e e e e e e e e o e e e o e e e e o e o o o =
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Evaluation
Graph Data Structure

= Adjacency list (one of de-facto standard graph data structures)

Multi-banked concurrent adjacency list
Graph L

Adjacency list
(dynamically grows)

M)
Bank-0 :
) (sub adjacency-list) - Dynamic array (vector)
® g 1 1 1 1 1
o €
6 G S -OI T T T 1
2 g < £ Dynamic array (vector)
~al—1112 = Bank-1 53 haliatetieg
§ 0 > (sub adjacency-list) T %
ES t ~ T T T T
S |1 0 < Dynamic array (vector)
o : ~—/ 1 1 1 1
12
S RN 0 N Bank-2
c% ‘ | (sub adjacency-list)
'
Neighbor vertex IDs @ Mutex
. .o Bank No = MOD(hash(source vertex ID), #of banks
Vertex ID is a 64-bitint ( ............ ( ...................................... ) ........ f ............... ) ......................................................................................................................................
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Evaluation
Adjacency List Implementation

Adjacency-list with the default allocator (std::allocator)

class AdjacencylList {
Adjacency list

(dynamically grows) using edgeVec = vector<int>;
) — using vertexTable = unordered_map<int, edgeVec>;
- Dynamic array (vector) vertexTable table;
| | | | |
5 E | .
[oRe} — AdjacencylList() : table {}
c s Dynamic array (vector)
(n'o 1 1 1 ]
£ void addEdge(int source, 1int target) {
= — T table[source].push_back(target);
Dynamic array (vector) 1
_) | | | |
} *ksome unimportant details are omitted

Lawrence Livermore National Laboratory
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Evaluation
Allocator-Aware Adjacency List

= Adjacency list with a custom allocator

template <class Alloc>
class Adjacencylist {

using edgeVec = vector<int, Alloc::rebind<int>::other>;

using tableAlloc = Alloc::rebind<pair<int, edgeVec>>::other;
using vertexTable = unordered_map<int, edgeVec, /* ... %/,
tableAlloc>;

vertexTable table;
AdjacencylList(Alloc alloc) : table(alloc) {}

// No changes to this method
void addEdge(int source, int target) {}

} *)ksome unimportant details are omitted

Changed to an allocator-aware data structure, following the C++ standard style
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Evaluation

Allocate Adjacency List Using Metall

using AdjList = AdjacencylList<metall::manager::allocator_type<std::byte>>;

void main () {
metall::manager metall_mgr (metall::create_only, "/ssd/graph");

autox adj = metall_mgr.construct<AdjList>("graph'")
(metall_mgr.get_allocator());

adj->addEdge (1, 2);
}

CALHY .
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Evaluation
Machine Configuration

= Used two single-node machines at LLNL

EPYC (conventional PM device)

Optane (oyte addressable PM device)

Storage NVMe SSD Storage Intel Optane DC Persistent
DRAM 556 GB Memory (App Direct Mode + DAX)
CPU hread orAn 192 G5
AMD EPYC CPU x 2 (96 threads) CPU Intel Skylake x 2 (96 threads)
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Evaluatior_1 Result _
Dynamic Graph Construction

shared-memory
multi-thread

= Baselines (memory allocators that use file-backed mmap underneath)
— Boost.Interprocess
- Uses a single tree structure for memory allocation management
— memkind (PMEM kind)

- Provides an allocator built on top of jemalloc
- Cannot reattach data (uses PM as extended volatile memory)

—*— Boost.Interprocess (BIP) +memkind (PMEM kind) -e-Metall

. EPYC (NVMe SSD) Optane (byte-addressable PM)
S 8 10
£
4o 6 8 \‘ﬂ
() (@] T
m| © 4
Ll 5 S\
qua —r—————— 2
7 o 0
< 25 26 27 28 29 30 25 26 27 28 29 30

Graph SCALE (the number of inserted edges = 25CALE x 32)

(SCALE 30 is larger than DRAM)

CALHY
Lawrence Livermore National Laboratory 2 *CASC
LLNL-PRES-817002 0...’.’.;. X3

Vetall provides persistent
memory features whereas
PMEM kind does not.

NYSE 24

al Nuclear Security Administration



Evaluation Result _ _
Incremental Graph Construction, Taking Snapshots

*reflink: copy-on-write file copy

= Workload - - No snapshot -a Normal copy -e reflink copy
— Take a snapshot after inserting each chunk (64M edges) m 400
— Insert edges into the original grap e :
ot T O 300 reflink used 83% less space
Edges 7 J ] » to keep all snapshots
1 l 3 l 5 l D 200 ‘
-_— )
Graph @ @ 8 100
S~———— O
2 l 4 l 6 l | & o ®
— | 1 3 5 7 9 111315 17 19 21 23 25
Snhapshots B Ej ‘ o5
- R = reflink is 8X faster on average
Time —= 20
o me >
= Dataset g 1
— Wikipedia page link insertions (1.8B edges) = 0
(curated by parsing English Wikipedia's revision history) a . H. t H. l
o)
= Machine © 0 .LLI_I.I.|. Lhlh llll
— EPYC machine (NVMe SSD with XFS filesystem) s 5 7 9 113 15 1719 21 23 25
[teration
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Related Work

= Heap allocators (e.g., jemalloc, tcmalloc, malloc implementations)
— Many studies have been conducted and showed notable results
— Cannot persistently store their internal structures

= Persistent Memory Allocator

— NVMalloc
« Allocates memory on a distributed non-volatile memory (NVM) storage system
« Creates a file per memory allocation request

— libpmemobj (in PMDK)
- Employs a fine-grained persistence policy (ideal for transactional operations)

— Boost.Interprocess
- Designed for interprocess communication (not designed as a persistent memory)

= Persistent Data Store

— Hierarchical Data Format (HDF)

- Allows applications to store data with portable formats
- Metall is designed as a lightweight tool by limiting data portability

Metall is designed as a lightweight and high-performance persistent

memory allocator with the coarse-grained persistence policy
Lawrence Livermore National Laboratory ".:. CASC INVYSE 26
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Summary (1/2)
Metall

A memory allocator built on top of a memory mapping region e —

— Designed to work on any devices with file system support (including tmpfs) .
| Application
= Enables applications to allocate heap-based objects into PM, ) T
Just like main-memory  Allocator Notal
= Rich API for custom C++ data structures C Man
Memory i Page cache |
- Employs the coarse-grained consistency model - ORAM I “““ /
; mmap()
= Provides an efficient snapshot/versioning oo [ Appdata
NG Y (files) ,
= Incorporates state-of-the-art allocation algorithms e
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Summary (2/2)
Persistent Data Centric Computing

Data Analytics Workflow Development/Debug Workflow

Analytics 1 Analytics 2

Data ingestion Analytics Data ingestion Analytics Data ingestion Debug Data ingestion Debug
5 4 @ 5 4 @ SN 5 0 [

Persistent Data

. Analytics 1 Deb
Persistent Data i
@ >% - </>
: .
ingestion Data
Analytics 2 ingestion
Debug

Metall enables applications to efficiently implement and to fully leverage

persistent data centric computing mode/

1493e, X
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