Callable object computing \(e^x\).
Defined in Header
#include <eve/module/math.hpp>
{
template< eve::floating_value T >
template< eve::floating_value T >
}
constexpr callable_exp_ exp
Callable object computing .
Definition: exp.hpp:97
constexpr callable_acos_ acos
Callable object computing the arc cosine.
Definition: acos.hpp:100
SIMD-compatible representation of complex numbers.
Definition: complex.hpp:39
Parameters
Return value
Returns the elementwise exponential of the input.
In particular:
- If the element is \(\pm0\), \(1\) is returned
- If the element is \(-\infty\), \(+0\) is returned
- If the element is \(\infty\), \(\infty\) is returned
- If the element is a
NaN
, NaN
is returned
Returns elementwise the exponential of the input.
- for every z: eve::exp(eve::conj(z)) == eve::conj(std::exp(z))
- If z is \(\pm0\), the result is \(1\)
- If z is \(x+i \infty\) (for any finite x), the result is \(NaN+i NaN\).
- If z is \(x+i NaN\) (for any finite x), the result is \(NaN+i NaN\).
- If z is \(+\infty+i 0\), the result is \(+\infty\)
- If z is \(-\infty+i y\) (for any finite y), the result is \(+0 \mathrm{cis}(y)\).
- If z is \(+\infty+i y\) (for any finite nonzero y), the result is \(+\infty \mathrm{cis}(y)\).
- If z is \(-\infty+i \infty\), the result is \(\pm 0+i \pm 0\) (signs are unspecified)
- If z is \(+\infty+i \pm\infty\), the result is \(\pm \infty+i NaN\) (the sign of the real part is unspecified).
- If z is \(-\infty+i NaN\), the result is \(\pm 0+i \pm 0\) (signs are unspecified).
- If z is \(\pm\infty+i NaN\), the result is \(\pm \infty+i NaN\) (the sign of the real part is unspecified).
- If z is \(NaN\), the result is \(NaN\).
- If z is \(NaN+i y\) (for any nonzero y), the result is \(NaN+i NaN\).
- If z is \(NaN+i NaN\), the result is \(NaN+i NaN\).
where \(\mathrm{cis}(y) = \cos(y)+i \sin(y)\)
Real version
#include <eve/module/math.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
wide_ft pf = {0.0f, -0.0f, -1.0f, 1.0f, 2.0f,
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
<<
"-> exp(pf) = " <<
eve::exp(pf) <<
'\n'
;
float xf = 1.0f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
<<
"-> exp(xf) = " <<
eve::exp(xf) <<
'\n';
return 0;
}
constexpr callable_nan_ nan
Computes the IEEE NaN constant.
Definition: nan.hpp:53
constexpr callable_minf_ minf
Computes the -infinity ieee value.
Definition: minf.hpp:60
constexpr callable_inf_ inf
Computes the infinity ieee value.
Definition: inf.hpp:58
Lightweight type-wrapper.
Definition: as.hpp:29
Wrapper for SIMD registers.
Definition: wide.hpp:65
Complex version
#include <eve/module/complex.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
wide_ft ref = { 0.0f, 1.0f, -1.0f, 0.5f};
wide_ft imf = { 2.0f , -1.0, -5.0, 0.0};
auto z = eve::as_complex_t<wide_ft>(ref, imf);
std::cout
<< "---- simd" << std::endl
<< "<- z = " << z << std::endl
<<
"-> exp(z) = " <<
eve::exp(z) << std::endl;
return 0;
}