E.V.E
v2023.02.15

◆ acsch

eve::acsch = {}
inlineconstexpr

Callable object computing \(\log(1/x+\sqrt{1/x^2+1})\).

Defined in Header

#include <eve/module/math.hpp>

Callable Signatures

namespace eve
{
template< eve::floating_value T >
T acsch(T x) noexcept; //1
template< eve::floating_value T >
}
constexpr callable_acsch_ acsch
Callable object computing .
Definition: acsch.hpp:63
Definition: abi.hpp:18
SIMD-compatible representation of complex numbers.
Definition: complex.hpp:39

Parameters

Return value

  1. Returns the elementwise inverse hyperbolic cosine of the input. The inverse hyperbolic sine is semantically equivalent to \(\log(1/x+\sqrt{1/x^2+1})\).

    In particular:

    • If the element is \(\pm\infty\), \(\pm0\) returned.
    • If the element is \(\pm1\), \(\pm\infty\) is returned.
    • If the element does not belong \(]0,1[\), NaN is returned.
  2. Returns the complex arc hyperbolic cosecant of z, computed as \(\mathop{\mathrm{asinh}}(1/z)\).

Example

#include <eve/module/math.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
wide_ft pf = {1.0f, 2.0f, eve::inf(eve::as<float>()), 0.5f};
std::cout << "---- simd" << '\n'
<< "<- pf = " << pf << '\n'
<< "-> acsch(pf) = " << eve::acsch(pf) << '\n'
;
float xf = 1.0f;
std::cout << "---- scalar" << '\n'
<< "<- xf = " << xf << '\n'
<< "-> acsch(xf) = " << eve::acsch(xf) << '\n';
return 0;
}
constexpr callable_inf_ inf
Computes the infinity ieee value.
Definition: inf.hpp:58
Lightweight type-wrapper.
Definition: as.hpp:29
Wrapper for SIMD registers.
Definition: wide.hpp:65