202]

DESIGN AND VERIFICATION™

DVICON

NNNNNNNNNNNNNNNNNNNNNNN

UVM-SystemC Randomization - Updates from
the SystemC Verification Working Group

Thilo Voertler, COSEDA Technologies GmbH

Dragos Dospinescu, AMIQ
Martin Barnasconi, NXP Semiconductors

Stephan Gerth, Bosch Sensortec GmbH

IIIIIIIIIIIIIIIII

202]

DESIGN AND VERIFICATION™

DVCON Overview

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Introduction and current VWG activities
 Randomization for UVM-SystemC
* Functional Coverage

 Summary and Outlook

SYSTEMS INITIATIVE

202]

DESIGN AND VERIFICATION™

DVICON

NNNNNNNNNNNNNNNNNNNNNNN

Introduction and current VWG
activities

Martin Barnasconi / Stephan Gerth

IIIIIIIIIIIIIIIII

2021
53275 11 For SystemC Folks: What is UVM ?

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

(< defaul P
* Methodology to create modular, scalable, Test feeqi‘;f,ce , config |
conflgurablc-e.angl reusqble testbgnches Mestbench en) (|
* Reuse Verification IP with standardized interfaces <corebonrd
* Standard defined as class library providing a set o angor hsugw\\m[j;elusugsc’
of built-in features dedicated to verification — —
 E.g., phasing, component overriding (factory), YvCllenv) (f | uvezleny)
configuration, score-boarding, reporting, etc. | agent agent
.o . . . Sqr |+ conf ! Sqr 1 conf |
* Verification environment supporting Coverage R R
Driven Verification (] i gy o U g
e Using constrained random stimulus generation, S

independent result checking and coverage collection

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV Why UVM in SystemC/C++ ?

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021
Product

. . Product spec implementation
* Growing need for a standardized \p — p" “
system-level verification methodology Agoithfuncionsl 4. PrO3UELnegrtion
* Support inclusion of embedded software \ - - _/_ -
° Ea rly V&V in d StandardiZEd Way (”Sh|ft Left”) Architecture/system ‘_V&V_H{ IC/system integration :
. I and test I
* Reuse of tests and test bench IP in the \ e :/ |
verification and validation phases clokisusystem () s P MPementaton ||
\ andtes
* V&V intent exchangeable when using VU\7|vT-§ys't€m'v€riTog

SystemC/C++ as base language

* Support methodologies such as Hybrid prototyping,
Hardware-in-the-Loop (HiL) simulation and

Zrcellery) Rapid Control Prototyping (RCP)

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV UVM-SystemC Principles

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Comply with UVM-SystemVerilog (IEEE 1800.2) Standardized API

* |dentical class definitions, methods and other definitions in the LRM
* Very limited API changes to address SystemC/C++ reserved keywords

* Comply with SystemC standard and execution semantics
* Follow SystemC-defined TLM1 and TLM2 communication mechanism
* SystemC modules capture testbench hierarchy, test sequences as transient objects

 UVM-SystemC Reference implementation based on C++11
* Compatible with most EDA vendor solutions and flows
* Limited use of add-on libraries to keep dependencies low

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICAT

DV . L) iIEvolving System-Level V&YV Ecosystem

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

» SystemC-centric V&V ecosystem is evolving
* Constrained Randomization (CRAVE)

* Functional Coverage (FC4SC)
e SystemC Assertions (SCA) — early development

 UVM-SystemC as “unification layer”
supporting various V&V methodologies
* Consolidated and consistent methodology

e Supported by a standardized API and reference
implementations maintained by Accellera and
its members

SYSTEMS INITIATIVE

System-level Verification &
Validation Methodology

UVM-SystemC

SCV CRAVE || FCASC

r————

I
SCA :

P ——

SystemC

\

C++

2021

DESIGN AND VERIFICATIO

DV 0 ~NMulti-Language Verification Support

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

{ Multi-Language Verification }

* UVM-SystemC is an integral part of the Methodology

Accellera Multi Language Verification
(MLV) Standard under development
* Enabling creation of “best of all worlds”
verification environments

e Standard not restricted to UVM in
SystemVerilog, SystemC or e, integration of
other languages such as Matlab or Python is { Commercial ESL/HDL/HVL Simulation J
considered Framework

UVM- UVM-

System-

Verilog SystemC

* More details on Multi-Language Verification

in DVCon US 2021 Short Workshop
3@ (March 15t 11:30 PST)

SYSTEMS INITIATIVE

=27 222k, UVM-SystemC Standardization
CONFERENCE AND EXHIBITION Deve I O p me nt S

VIRTUAL | MARCH 1-4, 2021

* First version released in 2016
» Standardized the foundational elements such as verification components, factory,
configuration database, sequences
* Three beta versions released between 2017-2020

* Incremental additions such as register classes, data access policy classes,
core-services, class defaults, etc.

* Improved code scalability to address more complex verification scenario’s

e Outlook 2021 and beyond

* Finalize register classes and backdoor access concepts

* Seamless inclusion of constraints and functional coverage capabilities
acce//era * CRAVE and FC4SC remain available as separate library

SYSTEMS INITIATIVE

NNNNNNNNNNNNNNNNNNNNNNN

Randomization for UVM-SystemC

Thilo Vortler, Daniel GroRe, Muhammad Hassan

2021

DESIGN AND VERIFICATION™

DV Randomization for UVM-SystemC

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* UVM-SystemC library has no randomization features as randomization
is not part of the UVM standard > Randomzation part of
SystemVerilog

» SystemC currently has no support for randomization within the core
language = Additional libraries requires

* CRAVE library has been donated to Accellera Uni Bremen, DFKI
GmbH, Johannes Kepler University Linz

 Last year randomization adaption layer for UVM-SystemC was
released

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV Randomization for UVM-SystemC

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

e Constrained Random Verification Environment

e Syntax and semantics closely followed SystemVerilog IEEE 1800 std
* Random objects

 Random variables

e Support for C++ and bitlevel SystemC datatypes

e Hard/soft constraints

* Efficient constraint solvers

* MIT license

Crave is available at: http://www.systemc-verification.org/
accellera

SYSTEMS INITIATIVE

http://www.systemc-verification.org/

2021

DESIGN AND VERIFICATION™

DV L 0~ Randomization for UVM-SystemC

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

C++ Constraint Specification

Intermediate Representation
(Constrained Obijects)

Multi-solver
Constraint Partitioner

Pre-generation Analyses
Soft Constraint Analyzer

backend

Distribution Solver

Generation
Solver Parallelizer

|

Constraint Debugger

acce /lera Coverage Analyzer

SYSTEMS INITIATIVE

Post-generation Analyses @

2021

DESIGN AND VERIFICATION™

DV 0 N Randomization for UVM-SystemC

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* CRAVE Syntax is similar to SystemVerilog,
e Can be used without UVM

class item; SystemVerilog syntax
rand int v;

constraint ¢ { v < 10; }
endclass

class item : public crv_sequence_ item ({ CRA“HEsyntax
crv_variable<int> v; //Random Variable
crv_constraint ¢ { v() < 10 }; //Constraint
item(crv_object name) ({}

};

CRAVE syntax might change in Accellera standard
accellera

SYSTEMS INITIATIVE

202]

DESIGN AND VERIFICATION™

DV N UBUS Example

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Ubus example in current UVM-SystemC Beta
e simple non-multiplexed
e Synchronous
* no pipelining
* Address bus: 16 bit wide
* Data bus: 8 bit wide

* UVM example provided in the UVM Users Guide
(http://accellera.org/downloads/standards/uvm)

* N number of Masters & Slaves supported

* Version supporting randomization using
CRAVE available

SYSTEMS INITIATIVE

toplevel
-
test
4
ubus_example_tb
scoreboard
(checks, coverage)
Q
4 N\
ubus_env
agent (m) agent (s)
Sqr Sqr
Drv | | Mon Drv | | Mon
. . 4 A
\\ T 7 J
_ l'/’—_' /
_ 4 pemmmm==== 7
/
. DUT

http://accellera.org/downloads/standards/uvm

2021

DESIGN AND VERIFICATION™

DV UBUS Example (sequence item)

CONFERENCE AND EXHIBITION

viIRTUuaL| class ubus_transfer extends uvm_sequence_item;

rand bit [15:0]
rand ubus_rw_enum
rand int unsigned
rand bit [7:0]
rand bit [3:0]
rand int unsigned
rand int unsigned

constraint c_read write ({

}

constraint c_size {
size inside {1,2,4,8};

}

data.size () == size;

}

transmit delay <= 10 ;
}

/""
accel

addr;

read write;
size;

datal];

wait statel[];
error pos;

transmit delay = O;

read write inside { READ, WRITE };

constraint c_data wait size {
wait state.size() == size;

constraint c_transmit delay {

SystemVerilog

class ubus_transfer : public
uvm_randomized sequence_item {
public:

crv_variable<ubus rw_enum> read write;
crv_variable<sc_bv<16>> addr;
crv_variable<unsigned> size;
crv_vector<sc_bv<8>> data;
crv_vector<sc bv<4>> wait state;
crv_variable<unsigned> error_ pos;
crv_variable<unsigned> transmit delay;

crv_constraint c¢_read write {inside(read write(),
std: :set<ubus_rw_enum> ({
ubus_rw_enum: :READ, ubus_ rw_enum: :WRITE
IR
crv_constraint c_size {inside(size(),
std: :set<int> { 1, 2, 4, 8 }
)}
crv_constraint c_data _wait_size {
data() .size() == size(),
wait state() .size() == size()
}s;
crv_constraint c_transmit delay {
transmit delay()<=10;
}s;

N~

SYSTEMS INITIATIVE

SystemC
CRAVE syntax might change in Accellera standard

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

UBUS Example (uvm_ sequence)

VIRTUAL | MARCH 1-4, 3

class write_double word seq extends ubus base_ sequence;

rand bit [15:0] start_addr;

rand bit [7:0] data®; rand bit [7:0] datal; rand bit [7:0] data2;
rand bit [7:0] data3; rand bit [7:0] data4; rand bit [7:0] data5;

rand bit [7:0] data6; rand bit [7:0] data7;
rand int unsigned transmit del = 0;
constraint transmit del ct { (transmit _del <= 10); }

virtual task body();

SystemVerilog

class write_double _word _seq : public ubus_base_sequence<REQ,
public:
crv_variable<sc_bv<16>> start_addr;
crv_variable<sc_bv<8>> data@, datal, ... data7;
crv_variable<unsigned int> transmit_del;
crv_constraint transmit_del_ct { transmit_del() <= 10 };

void body() {

RSP> {

SystemC

SYSTEMS INITIATIVE

CRAVE syntax might change in Accellera standard

202]

DESIGN AND VERIFICATION™

DVLCON Randomzation of DUTs

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Randomization can be used also during set up of the DUT
* Possible to modify DUT before instantiation using constraints
* UVM-SystemC allows access to SystemC phases from a UVM test

UVM common phases
|<—Pre-run phases 5 Runtime phases 3 | Post-run phases4)|

buildw lconnectﬂl A" A' run @A]Iextract ﬂ' checkA'l reportAl finaIV'

UVM runtime phases &

end_of elaboration

start_of simulation [I I]CED CEDC[D
@ = SystemC process(es)

\ configure main shutdown
w = top-down execution
= bottom-up execution

pre-resef post-reset .
reset ~
acce //er before_end_of_elaboration end_of_elaboration start_of_simulation Simulation — Actual Simulation and time progess

SYSTEMS INITIATIVE

Legend

202]
DV 0N Randomizing SystemC AMS DUTs

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

e Simple example: Setting stuck faults in ADC behavioral model

[_conv_de2tdf1 i_sat_tdf1 I_muls_tdf1 i_conv_tdf1 i_conv_tdf2de1

<double, double > <double> <double> <double, int> <int, s¢_dt::sc_bv<12>>

adc_limit

sampling_time = sc_time(1.0,SC_US) upper_limit = {T}(1) scalar = {T}((1<<p.adc_bits)/2.0)
lower_limit = {T}(-1)

adc_bits =12

* Set one output bit of adc output to , 1“ = Stuck at fault
e Several bits can be also set to ,1“
* Modification of DUT just from UVM test possible

accellera
© Accellera Systems Initiative

SYSTEMS INITIATIVE

19

202]
DV 0N Randomizing SystemC AMS DUTs

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

void top_test_base::build_phase(uvm: :uvm_phase& phase) { struct rand_one_hot : public crave::crv_sequence_item {
// connect to SystemC DUT error location probe crave::crv_variable<unsigned int > bits;
dut t int> stuck bit int: crave::crv_constraint c_one_hot{ "c_one_hot" };
ut_connector<int> stuck_bit_int; rand_one_hot(crave::crv_object_name = "rand_one_hot") {
stuck_bit_int.bind("*i_conv_tdf2del.tdf_i"); c_one_hot = {crave::onehot(bits()) & (bits() < (1<<12)) };
// define bit error functor to model fault }
auto stuck_at_1_error = };
[&](int error_mask, double time, const int& oldval) { B.._sgent f 0.adco 00 * L
return int{error_mask | oldval}; 163 | et
}_; - o- /
rand _one _hot rand_bits; ' o
- - - 1e3 ”‘__\r”ﬂ
rand_bits.randomize(); { T
auto error_class = std::bind(stuck_at_1_error, rand_bits.bits, B c agent i 0mdes 00 s -
std: :placeholders::_1, std::placeholders::_2); I] _—
stuck_bit_int.change_dynamic(error_class); _ﬁmwé f/f,/f”f’
/f
° . 0 ,//
m_top_env = top_env::type_id::create("m_top_env", this); o0es _—
1 ,.»/
} 1

500e-6 1e3 15e-3 e

a{,'ce//era Random stuck at 1 error (bit 5)

© Accellera Systems Initiative 20
SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV Randomization for UVM-SystemC

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

e Standardization efforts:
e Write standard document

* Adapt implementation to use existing SystemC concepts (sc_object,
sc_any_value)

* Check with Portable Stimulus Group constraint syntax definition

 Randomization - Proof of concept Implementation
* License cleanup (done)
* Adapt syntax according to standard
* Update build System

SYSTEMS INITIATIVE

202]

DESIGN AND VERIFICATION™

DVICON

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

Functional Coverage

Dragos Dospinescu

SYSTEMS INITIATIVE

202]

DESIGN AND VERIFICATION™

DV 0N Agenda

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* The FC4SC library & its features
* Coverage model

* Runtime data introspection

* Qutput database generation

* Next steps & work in progress

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV The FC4SC library & its features

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Pure C++11 based, header-only, no dependency on other libraries
— FC4SC core library (AMIQ) + improvements and new features (NVIDIA)

* Complete coverage model (based on SystemVerilog)
— Define coverage model, collect coverage data
— Hierarchy & scoping support
— Separation between the coverage model and data
— Dynamic model creation (built at runtime)

* On-the-fly coverage data introspection via visitor pattern

* UCIS-DB output — interoperable with commercial tools

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

The model is based on SV:

— covergroups

— coverpoints

— Crosses

— bins

— Type & instance

— Options

— Sample function for collecting data

— Conditional expression for sampling

SYSTEMS INITIATIVE

Coverage model: basic structure

class cvg _ex: public fcdsc::covergroup {
public:

int data, dir;

CG _CONS(cvg_ex) {/*constructor*/}

COVERPOINT (int, data cp, data) {
bin<int>("zero", 0),
bin<int>("positive", 1, 2, 3)

};

COVERPOINT (int, dir cp, dir) {
bin<int>("write", 1),
bin<int>("read", 0)

};

auto dir x data = cross<int,int>(

"dir x data", &dir cp, &data_cp);

};

cvg_ex cg;

cg.dir = 0; cg.data = 3;
cg.sample() ;

2021

DESIGN AND VERIFICATION™

DV

DVLE Coverage model: scoping

VIRTUAL | MARCH 1-4, 2021

* Hierarchical coverage model
representation
— Type & instance

— Similar to scopes in SV (packages, modules
etc.)

— Parent -> child hierarchy
* In code:

— Extend from fc4sc::scope

— Declare the scope via the macro call
SCOPE_DECL

— Use CG_SCOPED _CONS in the covergroup
accellera

SYSTEMS INITIATIVE

class cov_model : public fc4dsc::scope {
SCOPE DECL (cov_model)

class cvg _ex : public fcédsc::covergroup ({
// declaration scope: cov_model::cvg ex
CG _SCOPED CONS(cvg ex, cov_model) { }
/] ...

}i
}i

class main : public fcdsc::scope {
SCOPE DECL (main)
// creation scope: main.cg
cvg_ex cg;
// scope assigned later, at instantiation

};

2021

DESIGN AND VERIFICATION™

DV Coverage model: context

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Each coverage model sitsin a
context

* Separates coverage models
instantiated in the same simulation

» FCA4SC creates a default context —
no need to explicitly define one

SYSTEMS INITIATIVE

class cov_model : public fc4dsc::scope { // .

};

int main(char* argv[], int argc) {
auto ctxl, ctx2;

ctxl = fcdsc::global::create new context();
ctx2 = fcdsc::global::create new context();
cov_model ml(“modell”, FILE , LINE ,ctxl);
cov_model m2(“model2”, FILE , LINE ,ctx2);

// run simulation and sample covergroups ...

fcdsc::global::delete_context (cntxtl);
fcdsc::global::delete_context (cntxt2) ;

2021

DVC N Coverage model: dynamic models (1)

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Coverage model defined during runtime
* Create a dynamic_covergroup_factory object
* Insert coverpoints (or crosses) & bins dynamically

fcdsc: :dynamic covergroup factory dynamic cvg fac("dynamic cvg fac");
auto cvp_sum = cvg.create coverpoint<int(int,int) ,bool (int)>(

"cvg sum", /* name of the coverpoint */
[]1(int x, int y) {return x+y;}, /* lamba sample func *x /
[] (int x) {return x == 1;}); /* lamba condition func */

cvp_sum.create bin("ZERO", 0);
cvp_sum.create bin("ONE", 1);

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

2021

VIRTUAL | MARCH 1-4, 2021

* Instantiate a dynamic covergroup
* Bind sample function and condition

// Dynamic Instantiation
int vl, v2;

fcdsc: :dynamic covergroup inst(dynamic_cvg fac,"inst", FILE , LINE);
cvp_sum.bind sample (inst, vl, v2);
cvp_sum.bind condition(inst, v2);
// sample

vl =0; v2 = 1;

inst.sample() ;

SYSTEMS INITIATIVE

Coverage model: dynamic models (2)

2021

DESIGN AND VERIFICATION™

DV Runtime data introspection

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Coverage data != coverage model
* fc4sc::bin -> model -> User defined lifetime
* fcdsc::bin_data_model -> data -> context defined lifetime

* Visitors visit the internal data representation

class visitor : public fcdsc_visitor ({
// virtual functions inherited from fc4sc visitor
void visit(fcdsc::cvg _base data modelé& base) ;
void visit(fcdsc::coverpoint base data model& base);
void visit(fcdsc::cross_base data model& base);
void visit(fcdsc::bin base data modelé& base) ;

};

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV Output database generation

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Qutput = UCIS DB (XML)

« xml_printer::coverage save
* Visitor
* Name argument

* (Optional) Context argument

* Context isolated

* (Can be called at any point during
runtime

SYSTEMS INITIATIVE

int main(char* argv[], int argc) ({
auto ctxl, ctx2;

ctxl = fcdsc::global::create new context();

ctx2 = fcdsc::global::create new context();

// create covergroups ...

// run simulation and sample covergroups ...

/...

xml printer::coverage save(“ctxl.xml”, ctxl);
xml printer::coverage save(“ctx2.xml”, ctx2);

fcdsc::global: :delete_context (cntxtl) ;
fcdsc::global: :delete_context (cntxt2) ;

2021

DESIGN AND VERIFICATION™

DV Next steps & work in progress

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

« Standardize the API

« Create better documentation

« Implement missing cross functionality

« Decouple coverage implementation from declaration (user)
« Work on an official release

SYSTEMS INITIATIVE

NNNNNNNNNNNNNNNNNNNNNNN

Summary and Outlook

Stephan Gerth

2021

DESIGN AND VERIFICATION™

DV Summary and Outlook

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* UVM-SystemC 1.0-beta4 release
* Few register related blocking items

* CRAVE integration layer for UVM-SystemC released
e Standardization documentation efforts in progress
e Donation process of CRAVE to Accellera kicked-off

* Functional Coverage w/ FC4SC
 AMIQ's functional coverage implementation (FC4SC) part of Accellera
* APl standardization for functional coverage major upcoming topic

* Input and support from interested parties welcome!

SYSTEMS INITIATIVE

202]

DESIGN AND VERIFICATION™

DVvC O Summary and Outlook

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* References

» SystemC Verification Working Group
* https://www.accellera.org/activities/working-groups/systemc-verification

* UVM-SystemC

* https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz

e FCASC
* https://github.com/amig-consulting/fc4sc

* CRAVE

* http://www.systemc-verification.org/crave

SYSTEMS INITIATIVE

https://www.accellera.org/activities/working-groups/systemc-verification
https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz
https://github.com/amiq-consulting/fc4sc
http://www.systemc-verification.org/crave

