
A Producer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface to libdwarf, a library of functions to provide

creation of DWARF debugging information records, DWARF line number information,

DWARF address range and pubnames information, weak names information, and

DWARF frame description information.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2021 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document

without restriction except that when publishing more than a small amount of the

document please acknowledge Silicon Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to propose a library of functions to create DWARF

debugging information. Reading (consuming) of such records is discussed in a separate

document.

The functions in this document have mostly been implemented at Silicon Graphics and

used by the SGI code generator to provide DWARF2 debugging information in the

1990’s. Some functions (and support for some extensions) were provided by Sun

Microsystems.

Example code showing one use of the functionality may be found in the dwarfgen

dwarfgen and simpleexample application (provided in the source distribution

along with libdwarf).

The focus of this document is the functional interface, and as such, implementation and

optimization issues are intentionally ignored.

Rev 4.2, 16 January 2021 0.3.4 - 1 -

- 2 -

Error handling, error codes, and certain Libdwarf codes are discussed in the "A

Consumer Library Interface to DWARF", which should be read before reading this

document.

Before December 2018 very few functions in the Producer Library follow the error-

returns as defined in "A Consumer Library Interface to DWARF".

As of December 2018 every Producer Library call has a version that supports that

Consumer Library Interface and returns DW_DLV_OK or DW_DLV_ERROR (the

Producer Library has no use of DW_DLV_NO_ENTRY). The table of contents of this

document lists the latest version of each function. However, all the earlier documentation

is present here immediately following the documentation of the latest, and preferred,

interface. All the earlier interfaces are supported in the library.

Early interfaces (before December 2018) The general style of functions here in the

producer library is rather C-traditional with various types as return values (quite different

from the consumer library interfaces). The style generally follows the style of the

original DWARF1 reader proposed as an interface to DWARF. When the style of the

reader interfaces was changed (1994) in the dwarf reader (See the "Document History"

section of "A Consumer Library Interface to DWARF") the interfaces here were not

changed as it seemed like too much of a change for the two applications then using the

interface! So this interface remains in the traditional C style of returning various data

types with various (somewhat inconsistent) means of indicating failure.

December 2018 and later function interfaces all return either DW_DLV_OK or

DW_DLV_ERROR in a simple int.

The error handling code in the library may either return a value or abort. The library user

can provide a function that the producer code will call on errors (which would allow

callers avoid testing for error returns if the user function exits or aborts). See the

dwarf_producer_init() description below for more details.

1.3 Document History

This document originally prominently referenced "UNIX International Programming

Languages Special Interest Group " (PLSIG). Both UNIX International and the affiliated

Programming Languages Special Interest Group are defunct (UNIX is a registered

trademark of UNIX System Laboratories, Inc. in the United States and other countries).

Nothing except the general interface style is actually related to anything shown to the

PLSIG (this document was open sourced with libdwarf in the mid 1990’s).

See "http://www.dwarfstd.org" for information on current DWARF standards and

committee activities.

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in

the .debug_info and related sections by compilers, assemblers, and linkage editors

that, in conjunction with line number entries, are necessary for symbolic source-level

Rev 4.2, 16 January 2021 0.3.4 - 2 -

- 3 -

debugging. Refer to the document "DWARF Debugging Information Format" from UI

PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information

Format" version 2. and the "A Consumer Library Interface to DWARF".

In addition, this document refers to Elf, the ATT/USL System V Release 4 object format.

This is because the library was first developed for that object format. Hopefully the

functions defined here can easily be applied to other object formats.

1.5 Overview

The remaining sections of this document describe a proposed producer (compiler or

assembler) interface to Libdwarf, first by describing the purpose of additional types

defined by the interface, followed by descriptions of the available operations. This

document assumes you are thoroughly familiar with the information contained in the

DWARF Debugging Information Format document, and "A Consumer Library Interface

to DWARF".

The interface necessarily knows a little bit about the object format (which is assumed to

be Elf). We make an attempt to make this knowledge as limited as possible. For

example, Libdwarf does not do the writing of object data to the disk. The producer

program does that.

1.6 Revision History

March 1993 Work on dwarf2 sgi producer draft begins

March 1999 Adding a function to allow any number of trips through the

dwarf_get_section_bytes_a() call.

April 10 1999 Added support for assembler text output of dwarf (as when the output

must pass through an assembler). Revamped internals for better

performance and simpler provision for differences in ABI.

Sep 1, 1999 Added support for little- and cross- endian debug info creation.

May 7 2007 This library interface now cleans up, deallocating all memory it uses

(the application simply calls dwarf_producer_finish(dbg)).

September 20 2010 Now documents the marker feature of DIE creation.

May 01 2014 The dwarf_producer_init() code has a new interface and DWARF is

configured at run time by its arguments. The producer code used to be

configured at configure time, but the configure time producer

configure options are no longer used. The configuration was

unnecessarily complicated: the run-time configuration is simpler to

understand.

Rev 4.2, 16 January 2021 0.3.4 - 3 -

- 4 -

September 10, 2016 Beginning the process of creating new interfaces so that checking for

error is consistent across all calls (as is done in the consumer library).

The old interfaces are kept and supported so we have binary and

source compatibility with old code.

December 01, 2018 All function interfaces now hav e a version that returns only

DW_DLV_OK or DW_DLV_ERROR and pointer and other values are

returned through pointer arguments. For example,

dwarf_add_frame_info_c() is the December 2018 version, while

dwarf_add_frame_info(), dwarf_add_frame_info_b() are earlier

versions.

July 14, 2020 To enable testing of reading the DWARF5 section .debug_sup the new

function dwarf_add_debug_sup() is added. dwarfgen can call this

function, though dwarfgen presently only fills out a bogus .debug_sup

section to enable simple testing.

January 25, 2021 dwarf_add_AT_block_a() now also supports the DWARF5 form

DW_FORM_exprloc.

June 2021 Removing the obsolete functions that return Dwarf_Unsigned etc and

required ugly casting to check success/fail. The ones returning int

DW_DLV_OK etc are the only ones that should be used. The library

is now in its own file (libdwarfp.a or libdwarfp.so) and the source in its

own directory (src/lib/libdwarfp). libdwarfp is only built if a build of

dwarfgen is requested. Meaning with standard builds this library is not

provided. It only creates DWARF2 with any completeness, so it’s not

clear how it could possibly be generally useful.

2. Type Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and

symbolic names used to reference objects of and types used by libdwarf and some

declarations needed by libdwarfp The libdwarfp.h header file defines producer functions

and type specifically used by libdwarfp. The types defined by typedefs contained in

libdwarf.h and

libdwarfp.h all use the convention of adding Dwarf_ as a prefix to indicate that they

refer to objects used by Libdwarf. The prefix Dwarf_P_ is used for objects referenced

by the Libdwarf Producer when there are similar but distinct objects used by the

Consumer.

Rev 4.2, 16 January 2021 0.3.4 - 4 -

- 5 -

2.2 Namespace issues

Application programs should avoid creating names beginning with Dwarf_ dwarf_ or

DW_ as these are reserved to dwarf and libdwarf.

3. libdwarf and Elf and relocations

Much of the description below presumes that Elf is the object format in use. The library

is probably usable with other object formats that allow arbitrary sections to be created.

The library does not write anything to disk. Instead it provides access so that callers can

do that in whatever object format is appropriate.

3.1 binary or assembler output

With DW_DLC_STREAM_RELOCATIONS (see below) it is assumed that the calling app

will simply write the streams and relocations directly into an Elf file, without going

through an assembler.

With DW_DLC_SYMBOLIC_RELOCATIONS the calling app must either A) generate

binary relocation streams and write the generated debug information streams and the

relocation streams direct to an elf file or B) generate assembler output text for an

assembler to read and produce an object file.

With case B) the libdwarf-calling application must use the relocation information to

change points of each binary stream into references to symbolic names. It is necessary

for the assembler to be willing to accept and generate relocations for references from

arbitrary byte boundaries. For example:

.data 0a0bcc #producing 3 bytes of data.

.word mylabel #producing a reference

.word endlabel - startlabel #producing absolute length

3.2 libdwarf relationship to Elf

When the documentation below refers to ’an elf section number’ it is really only

dependent on getting (via the callback function passed by the caller of

dwarf_producer_init(). a sequence of integers back (with 1 as the lowest).

When the documentation below refers to ’an Elf symbol index’ it is really dependent on

Elf symbol numbers only if DW_DLC_STREAM_RELOCATIONS are being generated

(see below). With DW_DLC_STREAM_RELOCATIONS the library is generating Elf

Rev 4.2, 16 January 2021 0.3.4 - 5 -

- 6 -

relocations and the section numbers in binary form so the section numbers and symbol

indices must really be Elf (or elf-like) numbers.

With DW_DLC_SYMBOLIC_RELOCATIONS the values passed as symbol indexes can be

any integer set or even pointer set. All that libdwarf assumes is that where values are

unique they get unique values. Libdwarf does not generate any kind of symbol table from

the numbers and does not check their uniqueness or lack thereof.

3.3 libdwarf and relocations

With DW_DLC_SYMBOLIC_RELOCATIONS libdwarf creates binary streams of debug

information and arrays of relocation information describing the necessary relocation. The

Elf section numbers and symbol numbers appear nowhere in the binary streams. Such

appear only in the relocation information and the passed-back information from calls

requesting the relocation information. As a consequence, the ’symbol indices’ can be any

pointer or integer value as the caller must arrange that the output deal with relocations.

With DW_DLC_STREAM_RELOCATIONS all the relocations are directly created by

libdwarf as binary streams (libdwarf only creates the streams in memory, it does not write

them to disk).

3.4 symbols, addresses, and offsets

The following applies to calls that pass in symbol indices, addresses, and offsets, such as

dwarf_add_AT_targ_address_c() dwarf_add_arange_c() and

dwarf_add_frame_fde_c().

With DW_DLC_STREAM_RELOCATIONS a passed in address is one of: a) a section

offset and the (non-global) symbol index of a section symbol. b) A symbol index (global

symbol) and a zero offset.

With DW_DLC_SYMBOLIC_RELOCATIONS the same approach can be used, or, instead,

a passed in address may be c) a symbol handle and an offset. In this case, since it is up to

the calling app to generate binary relocations (if appropriate) or to turn the binary stream

into a text stream (for input to an assembler, if appropriate) the application has complete

control of the interpretation of the symbol handles.

4. Memory Management

Several of the functions that comprise the Libdwarf producer interface dynamically

allocate values and some return pointers to those spaces. The dynamically allocated

spaces can not be reclaimed (and must not be freed) except that all such libdwarf-

allocated memory is freed by dwarf_producer_finish_a(dbg) .

Rev 4.2, 16 January 2021 0.3.4 - 6 -

- 7 -

All data for a particular Dwarf_P_Debug descriptor is separate from the data for any

other Dwarf_P_Debug descriptor in use in the library-calling application.

4.1 Read Only Properties

The read-only properties specified in the consumer interface document do not generally

apply to the functions described here.

4.2 Storage Deallocation

Calling dwarf_producer_finish_a(dbg) frees all the space, and invalidates all

pointers returned from Libdwarf functions on or descended from dbg).

4.3 Error Handling

In general any error detected by the producer should be considered fatal. That is, it is

impossible to produce correct output so producing anything seems questionable.

The original producer interfaces tended to return a pointer or a large integer as a result

and required the caller to cast that value to determine if it was actually a -1 meaning there

was an error.

Beginning in September 2016 additional interfaces are being added to eliminate the

necessity for callers to do this ugly casting of results. In December 2018 that process has

reached completion. The revised functions return DW_DLV_OK, or DW_DLV_ERROR.

(which are small signed integers) and will have an additional pointer argument that will

provide the value that used to be the return value. This will make the interfaces type-safe.

The function dwarf_get_section_bytes_a() can also return

DW_DLV_NO_ENTRY.

5. Functional Interface

This section describes the functions available in the Libdwarf library. Each function

description includes its definition, followed by a paragraph describing the function’s

operation.

The following sections describe these functions.

The functions may be categorized into groups: initialization and termination operations,

debugging information entry creation, Elf section callback function, attribute creation,

expression creation, line number creation, fast-access (aranges) creation, fast-access

(pubnames) creation, fast-access (weak names) creation, macro information creation, low

level (.debug_frame) creation, and location list (.debug_loc) creation.

5.1 Initialization and Termination Operations

These functions setup Libdwarf to accumulate debugging information for an object,

Rev 4.2, 16 January 2021 0.3.4 - 7 -

- 8 -

usually a compilation-unit, provided by the producer. The actual addition of information

is done by functions in the other sections of this document. Once all the information has

been added, functions from this section are used to transform the information to

appropriate byte streams, and help to write out the byte streams to disk.

Typically then, a producer application would create a Dwarf_P_Debug descriptor to

gather debugging information for a particular compilation-unit using

dwarf_producer_init().

The producer application would use this Dwarf_P_Debug descriptor to accumulate

debugging information for this object using functions from other sections of this

document. Once all the information had been added, it would call

dwarf_transform_to_disk_form_a() to convert the accumulated information

into byte streams in accordance with the DWARF standard. The application would then

repeatedly call dwarf_get_section_bytes_a() for each of the .debug_*

created. This gives the producer information about the data bytes to be written to disk.

At this point, the producer would release all resource used by Libdwarf for this object

by calling dwarf_producer_finish_a().

It is also possible to create assembler-input character streams from the byte streams

created by this library. This feature requires slightly different interfaces than direct

binary output. The details are mentioned in the text.

5.1.1 dwarf_producer_init()

int dwarf_producer_init(

Dwarf_Unsigned flags,

Dwarf_Callback_Func func,

Dwarf_Handler errhand,

Dwarf_Ptr errarg,

void * user_data

const char *isa_name,

const char *dwarf_version,

const char *extra,

Dwarf_P_Debug *dbg_returned,

Dwarf_Error *error)

The function dwarf_producer_init() returns a new Dwarf_P_Debug

descriptor that can be used to add Dwarf information to the object. On success it returns

DW_DLV_OK. On error it returns DW_DLV_ERROR. flags determine whether the

target object is 64-bit or 32-bit. func is a pointer to a function called-back from

Libdwarf whenever Libdwarf needs to create a new object section (as it will for

each .debug_* section and related relocation section).

Rev 4.2, 16 January 2021 0.3.4 - 8 -

- 9 -

The flags values (to be OR’d together in the flags field in the calling code) are as

follows:

DW_DLC_WRITE is required. The values DW_DLC_READ DW_DLC_RDWR are

not supported by the producer and must not be passed.

The flag bit DW_DLC_POINTER64 (or DW_DLC_SIZE_64) Indicates the

target has a 64 bit (8 byte) address size. The flag bit DW_DLC_POINTER32

(or DW_DLC_SIZE_32) Indicates the target has a 32 bit (4 byte) address size.

If none of these pointer sizes is passed in DW_DLC_POINTER32 is assumed.

The flag bit DW_DLC_OFFSET32 indicates that 32bit offsets should be used in

the generated DWARF. The flag bit DW_DLC_OFFSET64

DW_DLC_OFFSET_SIZE_64 indicates that 64bit offsets should be used in

the generated DWARF.

The flag bit DW_DLC_IRIX_OFFSET64 indicates that the generated DWARF

should use the early (pre DWARF3) IRIX method of generating 64 bit offsets.

In this case DW_DLC_POINTER64 should also be passed in, and the

isa_name passed in (see below) should be "irix".

If DW_DLC_TARGET_BIGENDIAN or DW_DLC_TARGET_LITTLEENDIAN

is not ORed into flags then endianness the same as the host is assumed. If

both DW_DLC_TARGET_LITTLEENDIAN and

DW_DLC_TARGET_BIGENDIAN are OR-d in it is an error.

Either one of two output forms is specifiable:

DW_DLC_STREAM_RELOCATIONS or

DW_DLC_SYMBOLIC_RELOCATIONS .

The default is DW_DLC_STREAM_RELOCATIONS . The

DW_DLC_STREAM_RELOCATIONS are relocations in a binary stream (as

used in a MIPS/IRIX Elf object).

The DW_DLC_SYMBOLIC_RELOCATIONS are the same relocations but

expressed in an array of structures defined by libdwarf, which the caller of the

relevant function (see below) must deal with appropriately. This method of

expressing relocations allows the producer-application to easily produce

assembler text output of debugging information.

When DW_DLC_SYMBOLIC_RELOCATIONS is ORed into flags then

relocations are returned not as streams but through an array of structures.

Rev 4.2, 16 January 2021 0.3.4 - 9 -

- 10 -

The function func must be provided by the user of this library. Its prototype is:

typedef int (*Dwarf_Callback_Func)(

char* name,

int size,

Dwarf_Unsigned type,

Dwarf_Unsigned flags,

Dwarf_Unsigned link,

Dwarf_Unsigned info,

Dwarf_Unsigned* sect_name_index,

void * user_data,

int* error)

For each section in the object file that libdwarf needs to create, it calls this function

once (calling it from dwarf_transform_to_disk_form()), passing in the section

name, the section type, the section flags, the link field, and the info field. For an

Elf object file these values should be appropriate Elf section header values. For example,

for relocation callbacks, the link field is supposed to be set (by the app) to the index of

the symtab section (the link field passed through the callback must be ignored by the

app). And, for relocation callbacks, the info field is passed as the elf section number of

the section the relocations apply to.

The sect_name_index field is a field you use to pass a symbol index back to

libdwarf. In Elf, each section gets an elf symbol table entry so that relocations have an

address to refer to (relocations rely on addresses in the Elf symbol table). You will create

the Elf symbol table, so you have to tell libdwarf the index to put into relocation records

for the section newly defined here.

On success the user function should return the Elf section number of the newly created

Elf section.

On success, the function should also set the integer pointed to by sect_name_index

to the Elf symbol number assigned in the Elf symbol table of the new Elf section. This

symbol number is needed with relocations dependent on the relocation of this new

section.

Use the dwarf_producer_init_c() interface instead of this interface.

For example, the .debug_line section’s third data element (in a compilation unit) is

the offset from the beginning of the .debug_info section of the compilation unit entry

for this .debug_line set. The relocation entry in .rel.debug_line for this offset

must have the relocation symbol index of the symbol .debug_info returned by the

callback of that section-creation through the pointer sect_name_index.

On failure, the function should return -1 and set the error integer to an error code.

Nothing in libdwarf actually depends on the section index returned being a real Elf

section. The Elf section is simply useful for generating relocation records. Similarly, the

Elf symbol table index returned through the sect_name_index must be an index that

can be used in relocations against this section. The application will probably want to note

the values passed to this function in some form, even if no Elf file is being produced.

Rev 4.2, 16 January 2021 0.3.4 - 10 -

- 11 -

errhand is a pointer to a function that will be used as a default fall-back function for

handling errors detected by Libdwarf.

errarg is the default error argument used by the function pointed to by errhand.

For historical reasons the error handling is complicated and the following three

paragraphs describe the three possible scenarios when a producer function detects an

error. In all cases a short error message is printed on stdout if the error number is

negative (as all such should be, see libdwarf.h). Then further action is taken as follows.

First, if the Dwarf_Error argument to any specific producer function (see the functions

documented below) is non-null the errhand argument here is ignored in that call and

the specific producer function sets the Dwarf_Error and returns some specific value (for

dwarf_producer_init it is DW_DLV_OK as mentioned just above) indicating there is an

error.

Second, if the Dwarf_Error argument to any specific producer function (see the functions

documented below) is NULL and the errarg to dwarf_producer_init() is non-

NULL then on an error in the producer code the Dwarf_Handler function is called and if

that called function returns the producer code returns a specific value (for

dwarf_producer_init it is DW_DLV_OK as mentioned just above) indicating there is an

error.

Third, if the Dwarf_Error argument to any specific producer function (see the functions

documented below) is NULL and the errarg to dwarf_producer_init() is

NULL then on an error abort() is called.

The user_data argument is not examined by libdwarf. It is passed to user code in all

calls by libdwarf to the Dwarf_Callback_Func() function and may be used by

consumer code for the consumer’s own purposes. Typical uses might be to pass in a

pointer to some user data structure or to pass an integer that somehow is useful to the

libdwarf-using code.

The isa_name argument must be non-null and contain one of the strings defined in the

isa_relocs array in pro_init.c: "irix","mips","x86",

"x86_64","arm","arm64","ppc","ppc64", "sparc". The names are not strictly ISA names

(nor ABI names) but a hopefully-meaningful mixing of the concepts of ISA and ABI.

The intent is mainly to define relocation codes applicable to

DW_DLC_STREAM_RELOCATIONS. New isa_name values will be provided as

users request. In the "irix" case a special relocation is defined so a special CIE reference

field can be created (if and only if the augmentation string is "z").

The dwarf_version argument should be one of "V2", "V3", "V4", "V5" to indicate

which DWARF version is the overall format to be emitted. Individual section version

numbers will obey the standard for that overall DWARF version.

The extra argument is supports a comma-separated list of options. Passing in a null

pointer or an empty string is acceptable if no such options are needed or used. All-

Rev 4.2, 16 January 2021 0.3.4 - 11 -

- 12 -

lowercase option names are reserved to the libdwarf implementation itself (specific

implementations may want to use a leading upper-case letter for additional options).

The available options are

"default_is_stmt",

"address_size",

"minimum_instruction_length",

"maximum_operations_per_instruction",

"opcode_base",

"line_base",

"line_range",

"linetable_version",

"segment_selector_size",

and

"segment_size".

For example, to set the line-table generation default value of is_stmt to 0 pass in

"default_is_stmt=0".

To also set the minimum_instruction_length used in calculating line table address-

advance values to one one would pass in

"default_is_stmt=0,minimum_instruction_length=1".

It’s appropriate to add

"opcode_base=13"

for DWARF3 through DWARF5. All these default to something, but the something

depends on environment what macro names are set by the environment or a just constants

which makes it difficult to alter these values. See pro_line.h for the use of line-table

related constants (which will vary depending on the target ISA and ABI and compilers).

The error argument is set through the pointer to return specific error if error is non-

null and and there is an error. The error details will be passed back through this pointer

argument.

5.1.2 dwarf_pro_set_default_string_form()

int dwarf_pro_set_default_string_form(

Dwarf_P_Debug *dbg,

int desired_form,

Dwarf_Error *error)

The function dwarf_pro_set_default_string_form() sets the

Dwarf_P_Debug descriptor to favor one of the two allowed values:

DW_FORM_string (the default) or DW_FORM_strp.

Rev 4.2, 16 January 2021 0.3.4 - 12 -

- 13 -

When DW_FORM_strp is selected very short names will still use form

DW_FORM_string .

The function should be called immediately after a successful call to

dwarf_producer_init().

Strings for DW_FORM_strp are not duplicated in the .debug_str section: each

unique string appears exactly once.

On success it returns DW_DLV_OK. On error it returns DW_DLV_ERROR.

5.1.3 dwarf_transform_to_disk_form_a()

int dwarf_transform_to_disk_form_a(

Dwarf_P_Debug dbg,

Dwarf_Signed *chunk_count_out,

Dwarf_Error* error)

The function dwarf_transform_to_disk_form_a() is new in September 2016.

It produces the same result as dwarf_transform_to_disk_form() but returns

the count through the new pointer argument chunk_count_out .

On success it returns DW_DLV_OK and sets chunk_count_out to the number of

chunks of section data to be accessed by dwarf_get_section_bytes_a() .

It turns the DIE and other information specified for this Dwarf_P_Debug into a stream

of bytes for each section being produced. These byte streams can be retrieved from the

Dwarf_P_Debug by calls to dwarf_get_section_bytes_a() (see below).

In case of error dwarf_transform_to_disk_form_a() returns

DW_DLV_ERROR.

The number of chunks is used to access data by dwarf_get_section_bytes_a()

(see below) and the section data provided your code will insert into an object file or the

like. Each section of the resulting object is typically many small chunks. Each chunk has

a section index and a length as well as a pointer to a block of data (see

dwarf_get_section_bytes_a()).

For each unique section being produced dwarf_transform_to_disk_form_a()

calls the Dwarf_Callback_Func exactly once. The callback provides the connection

between Elf sections (which we presume is the object format to be emitted) and the

libdwarf() internal section numbering.

For DW_DLC_STREAM_RELOCATIONS a call to Dwarf_Callback_Func is made

by libdwarf for each relocation section. Calls to dwarf_get_section_bytes_a()

(see below). allow the dwarf_transform_to_disk_form_a() caller to get byte

streams and write them to an object file as desired, just as with the other sections of the

object being created.

For DW_DLC_SYMBOLIC_RELOCATIONS the user code should use

dwarf_get_relocation_info_count() and

dwarf_get_relocation_info() to retrieve the relocation info generated by

Rev 4.2, 16 January 2021 0.3.4 - 13 -

- 14 -

dwarf_transform_to_disk_form() and do something with it.

On failure it returns DW_DLV_ERROR and returns an error pointer through *error .

5.1.3.1 dwarf_transform_to_disk_form()

Dwarf_Signed dwarf_transform_to_disk_form(

Dwarf_P_Debug dbg,

Dwarf_Error* error)

The function dwarf_transform_to_disk_form() is the original call to generate

output and a better interface is used by dwarf_transform_to_disk_form_a()

though both do the same work and have the same meaning.

5.1.4 dwarf_get_section_bytes_a()

int dwarf_get_section_bytes_a(

Dwarf_P_Debug dbg,

Dwarf_Signed dwarf_section,

Dwarf_Signed *elf_section_index,

Dwarf_Unsigned *length,

Dwarf_Ptr *section_bytes,

Dwarf_Error* error)

The function dwarf_get_section_bytes_a() must be called repetitively, with

the index dwarf_section starting at 0 and continuing for the number of sections

returned by dwarf_transform_to_disk_form_a() .

It returns DW_DLV_NO_ENTRY to indicate that there are no more sections of Dwarf

information. Normally one would index through using the sectioncount from

dwarf_transform_to_disk_form_a() so DW_DLV_NO_ENTRY would never be seen.

For each successful return (return value DW_DLV_OK), *section_bytes points to

*length bytes of data that are normally added to the output object in Elf section

*elf_section by the producer application. It is illegal to call these in any order other

than 0 through N-1 where N is the number of dwarf sections returned by

dwarf_transform_to_disk_form_a() . The elf section number is returned

through the pointer elf_section_index.

The dwarf_section number is ignored: the data is returned as if the caller passed in

the correct dwarf_section numbers in the required sequence.

In case of an error, DW_DLV_ERROR is returned and the error argument is set to

indicate the error.

Rev 4.2, 16 January 2021 0.3.4 - 14 -

- 15 -

There is no requirement that the section bytes actually be written to an elf file. For

example, consider the .debug_info section and its relocation section (the call back

function would resulted in assigning ’section’ numbers and the link field to tie these

together (.rel.debug_info would have a link to .debug_info). One could examine the

relocations, split the .debug_info data at relocation boundaries, emit byte streams (in hex)

as assembler output, and at each relocation point, emit an assembler directive with a

symbol name for the assembler. Examining the relocations is awkward though. It is

much better to use dwarf_get_section_relocation_info()

The memory space of the section byte stream is freed by the

dwarf_producer_finish_a() call (or would be if the

dwarf_producer_finish_a() was actually correct), along with all the other space

in use with that Dwarf_P_Debug.

5.1.5 dwarf_get_relocation_info_count()

int dwarf_get_relocation_info_count(

Dwarf_P_Debug dbg,

Dwarf_Unsigned *count_of_relocation_sections ,

int *drd_buffer_version,

Dwarf_Error* error)

The function dwarf_get_relocation_info() returns, through the pointer

count_of_relocation_sections, the number of times that

dwarf_get_relocation_info() should be called.

The function dwarf_get_relocation_info() returns DW_DLV_OK if the call

was successful (the count_of_relocation_sections is therefore meaningful,

though count_of_relocation_sections could be zero).

*drd_buffer_version is the value 2. If the structure pointed to by the

*reldata_buffer changes this number will change. The application should verify

that the number is the version it understands (that it matches the value of

DWARF_DRD_BUFFER_VERSION (from libdwarf.h)). The value 1 version was never

used in production MIPS libdwarf (version 1 did exist in source).

It returns DW_DLV_NO_ENTRY if count_of_relocation_sections is not

meaningful because DW_DLC_SYMBOLIC_RELOCATIONS was not passed to the

dwarf_producer_init_c() dwarf_producer_init_b() or

dwarf_producer_init() call (whichever one was used).

It returns DW_DLV_ERROR if there was an error, in which case

count_of_relocation_sections is not meaningful.

Rev 4.2, 16 January 2021 0.3.4 - 15 -

- 16 -

5.1.6 dwarf_get_relocation_info()

int dwarf_get_relocation_info(

Dwarf_P_Debug dbg,

Dwarf_Signed *elf_section_index,

Dwarf_Signed *elf_section_index_link,

Dwarf_Unsigned *relocation_buffer_count,

Dwarf_Relocation_Data *reldata_buffer,

Dwarf_Error* error)

The function dwarf_get_relocation_info() should normally be called

repetitively, for the number of relocation sections that

dwarf_get_relocation_info_count() indicated exist.

It returns DW_DLV_OK to indicate that valid values are returned through the pointer

arguments. The error argument is not set.

It returns DW_DLV_NO_ENTRY if there are no entries (the count of relocation arrays is

zero.). The error argument is not set.

It returns DW_DLV_ERROR if there is an error. Calling

dwarf_get_relocation_info() more than the number of times indicated by

dwarf_get_relocation_info_count() (without an intervening call to

dwarf_reset_section_bytes()) results in a return of DW_DLV_ERROR once

past the valid count. The error argument is set to indicate the error.

Now consider the returned-through-pointer values for DW_DLV_OK .

*elf_section_index is the ’elf section index’ of the section implied by this group

of relocations.

*elf_section_index_link is the section index of the section that these

relocations apply to.

*relocation_buffer_count is the number of array entries of relocation

information in the array pointed to by *reldata_buffer .

*reldata_buffer points to an array of ’struct Dwarf_Relocation_Data_s’ structures.

The version 2 array information is as follows:

enum Dwarf_Rel_Type {dwarf_drt_none,

dwarf_drt_data_reloc,

dwarf_drt_segment_rel,

Rev 4.2, 16 January 2021 0.3.4 - 16 -

- 17 -

dwarf_drt_first_of_length_pair,

dwarf_drt_second_of_length_pair

};

typedef struct Dwarf_Relocation_Data_s * Dwarf_Relocation_Data;

struct Dwarf_Relocation_Data_s {

unsigned char drd_type; /* contains Dwarf_Rel_Type */

unsigned char drd_length; /* typically 4 or 8 */

Dwarf_Unsigned drd_offset; /* where the data to reloc is */

Dwarf_Unsigned drd_symbol_index;

};

The Dwarf_Rel_Type enum is encoded (via casts if necessary) into the single

unsigned char drd_type field to control the space used for this information (keep the

space to 1 byte).

The unsigned char drd_length field holds the size in bytes of the field to be relocated.

So for elf32 object formats with 32 bit apps, drd_length will be 4. For objects with

MIPS -64 contents, drd_length will be 8. For some dwarf 64 bit environments, such

as ia64, drd_length is 4 for some relocations (file offsets, for example) and 8 for

others (run time addresses, for example).

If drd_type is dwarf_drt_none, this is an unused slot and it should be ignored.

If drd_type is dwarf_drt_data_reloc this is an ordinary relocation. The

relocation type means either (R_MIPS_64) or (R_MIPS_32) (or the like for the particular

ABI. drd_length gives the length of the field to be relocated. drd_offset is an

offset (of the value to be relocated) in the section this relocation stuff is linked to.

drd_symbol_index is the symbol index (if elf symbol indices were provided) or the

handle to arbitrary information (if that is what the caller passed in to the relocation-

creating dwarf calls) of the symbol that the relocation is relative to.

When drd_type is dwarf_drt_first_of_length_pair the next data record

will be drt_second_of_length_pair and the drd_offset of the two data

records will match. The relevant ’offset’ in the section this reloc applies to should

contain a symbolic pair like

.word second_symbol - first_symbol

to generate a length. drd_length gives the length of the field to be relocated.

drt_segment_rel means (R_MIPS_SCN_DISP) is the real relocation

(R_MIPS_SCN_DISP applies to exception tables and this part may need further work).

drd_length gives the length of the field to be relocated.

The memory space of the section byte stream is freed by the

Rev 4.2, 16 January 2021 0.3.4 - 17 -

- 18 -

dwarf_producer_finish_a() call (or would be if the

dwarf_producer_finish_a() was actually correct), along with all the other space

in use with that Dwarf_P_Debug.

5.1.7 dwarf_reset_section_bytes()

void dwarf_reset_section_bytes(

Dwarf_P_Debug dbg

)

The function dwarf_reset_section_bytes() is used to reset the internal

information so that dwarf_get_section_bytes_a() will begin (on the next call)

at the initial dwarf section again. It also resets so that calls to

dwarf_get_relocation_info() will begin again at the initial array of relocation

information.

Some dwarf producers need to be able to run through the

dwarf_get_section_bytes_a() and/or the

dwarf_get_relocation_info() calls more than once and this call makes

additional passes possible. The set of Dwarf_Ptr values returned is identical to the set

returned by the first pass. It is acceptable to call this before finishing a pass of

dwarf_get_section_bytes_a() or dwarf_get_relocation_info()

calls. No errors are possible as this just resets some internal pointers. It is unwise to call

this before dwarf_transform_to_disk_form() has been called.

5.1.8 dwarf_pro_get_string_stats()

int dwarf_pro_get_string_stats(

Dwarf_P_Debug dbg,

Dwarf_Unsigned * str_count,

Dwarf_Unsigned * str_total_length,

Dwarf_Unsigned * strp_count_debug_str,

Dwarf_Unsigned * strp_len_debug_str,

Dwarf_Unsigned * strp_reused_count,

Dwarf_Unsigned * strp_reused_len,

Dwarf_Error* error)

If it returns DW_DLV_OK the function dwarf_pro_get_string_stats() returns

information about how DW_AT_name etc strings were stored in the output object. The

values suggest how much string duplication was detected in the DWARF being created.

Call it after calling dwarf_transform_to_disk_form() and before calling

dwarf_producer_finish_a() . It has no effect on the object being output.

On error it returns DW_DLV_ERROR and sets error through the pointer.

Rev 4.2, 16 January 2021 0.3.4 - 18 -

- 19 -

5.1.9 dwarf_producer_finish_a()

int dwarf_producer_finish_a(

Dwarf_P_Debug dbg,

Dwarf_Error* error)

This is new in September 2016 and has the newer interface style, but is otherwise

identical to dwarf_producer_finish() .

The function dwarf_producer_finish_a() should be called after all the bytes of

data have been copied somewhere (normally the bytes are written to disk). It frees all

dynamic space allocated for dbg, include space for the structure pointed to by dbg. This

should not be called till the data have been copied or written to disk or are no longer of

interest. It returns DW_DLV_OK if successful.

On error it returns DW_DLV_ERROR and sets error through the pointer.

5.2 Debugging Information Entry Creation

The functions in this section add new DIEs to the object, and also the relationships

among the DIE to be specified by linking them up as parents, children, left or right

siblings of each other. In addition, there is a function that marks the root of the graph

thus created.

5.2.1 dwarf_add_die_to_debug_a()

int dwarf_add_die_to_debug_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die first_die,

Dwarf_Error *error)

The function dwarf_add_die_to_debug_a() indicates to Libdwarf the root

DIE of the DIE graph that has been built so far. It is intended to mark the compilation-

unit DIE for the object represented by dbg. The root DIE is specified by first_die.

It returns DW_DLV_OK on success, and DW_DLV_error on error.

5.2.2 dwarf_new_die_a()

int dwarf_new_die_a(

Dwarf_P_Debug dbg,

Dwarf_Tag new_tag,

Dwarf_P_Die parent,

Dwarf_P_Die child,

Dwarf_P_Die left_sibling,

Dwarf_P_Die right_sibling,

Dwarf_P_Die *die_out,

Dwarf_Error *error)

Rev 4.2, 16 January 2021 0.3.4 - 19 -

- 20 -

On success dwarf_new_die_a() returns DW_DLV_OK and creates a new DIE with

its parent, child, left sibling, and right sibling DIEs specified by parent, child,

left_sibling, and right_sibling, respectively. The new die is passed to the

caller via the argument die_out() . There is no requirement that all of these DIEs

be specified, i.e. any of these descriptors may be NULL. If none is specified, this will be

an isolated DIE. A DIE is transformed to disk form by

dwarf_transform_to_disk_form() only if there is a path from the DIE

specified by dwarf_add_die_to_debug to it.

The value of new_tag is the tag which is given to the new DIE. parent, child,

left_sibling, and right_sibling are pointers to establish links to existing

DIEs. Only one of parent, child, left_sibling, and right_sibling may be

non-NULL. If parent (child) is giv en, the DIE is linked into the list after (before)

the DIE pointed to. If left_sibling (right_sibling) is giv en, the DIE is linked

into the list after (before) the DIE pointed to.

To add attributes to the new DIE, use the Attribute Creation functions defined in

the next section.

On failure dwarf_new_die_a() returns DW_DLV_ERROR and sets *error.

5.2.3 dwarf_die_link_a()

int dwarf_die_link_a(

Dwarf_P_Die die,

Dwarf_P_Die parent,

Dwarf_P_Die child,

Dwarf_P_Die left-sibling,

Dwarf_P_Die right_sibling,

Dwarf_Error *error)

On success the function dwarf_die_link_a() returns DW_DLV_OK and links an

existing DIE described by the given die to other existing DIEs. The given die can be

linked to a parent DIE, a child DIE, a left sibling DIE, or a right sibling DIE by

specifying non-NULL parent, child, left_sibling, and right_sibling

Dwarf_P_Die descriptors.

Only one of parent, child, left_sibling, and right_sibling may be non-

NULL. If parent (child) is giv en, the DIE is linked into the list after (before) the

DIE pointed to. If left_sibling (right_sibling) is giv en, the DIE is linked

into the list after (before) the DIE pointed to. Non-NULL links overwrite the

corresponding links the given die may have had before the call to

dwarf_die_link_a() .

If there is an error dwarf_die_link_a() returns DW_DLV_ERROR and sets error

with the specific applicable error code.

Rev 4.2, 16 January 2021 0.3.4 - 20 -

- 21 -

5.3 DIE Markers

DIE markers provide a way for a producer to extract DIE offsets from DIE generation.

The markers do not influence the generation of DWARF, they simply allow a producer to

extract .debug_info offsets for whatever purpose the producer finds useful (for example, a

producer might want some unique other section unknown to libdwarf to know a particular

DIE offset).

One marks one or more DIEs as desired any time before calling

dwarf_transform_to_disk_form().

After calling dwarf_transform_to_disk_form() call

dwarf_get_die_markers() which has the offsets where the marked DIEs were

written in the generated .debug_info data.

5.3.1 dwarf_add_die_marker_a()

int dwarf_add_die_marker_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

Dwarf_Unsigned marker,

Dwarf_Error *error)

This is preferred over dwarf_add_die_marker(). The function

dwarf_add_die_marker_a() writes the value marker to the DIE descriptor

given by die. Passing in a marker of 0 means ’there is no marker’ (zero is the default in

DIEs).

It returns DW_DLV_OK, on success. On error it returns DW_DLV_ERROR.

5.3.2 dwarf_get_die_marker_a()

int dwarf_get_die_marker_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

Dwarf_Unsigned *marker,

Dwarf_Error *error)

The function dwarf_get_die_marker_a() returns the current marker value for

this DIE through the pointer marker. A marker value of 0 means ’no marker was set’.

It returns DW_DLV_OK, on success. On error it returns DW_DLV_ERROR.

5.3.3 dwarf_get_die_markers_a()

Rev 4.2, 16 January 2021 0.3.4 - 21 -

- 22 -

int dwarf_get_die_markers_a(

Dwarf_P_Debug dbg,

Dwarf_P_Marker * marker_list,

Dwarf_Unsigned *marker_count,

Dwarf_Error *error)

The function dwarf_get_die_markers_a() returns a pointer to an array of

Dwarf_P_Marker pointers to struct Dwarf_P_Marker_s structures through the

pointer marker_list. The array length is returned through the pointer

marker_count.

The call is only meaningful after a call to dwarf_transform_to_disk_form() as

the transform call creates the struct Dwarf_P_Marker_s structures, one for each

DIE generated for .debug_info (but only for DIEs that had a non-zero marker value). The

field ma_offset in the structure is set during generation of the .debug_info byte

stream. The field ma_marker in the structure is a copy of the DIE marker of the DIE

given that offset.

It returns DW_DLV_OK, on success. On error it returns DW_DLV_ERROR (if there are no

markers it returns DW_DLV_ERROR).

5.3.3.1 dwarf_get_die_markers()

Dwarf_Signed dwarf_get_die_markers(

Dwarf_P_Debug dbg,

Dwarf_P_Marker * marker_list,

Dwarf_Unsigned *marker_count,

Dwarf_Error *error)

The function dwarf_get_die_marker() returns a pointer to an array of

Dwarf_P_Marker pointers to struct Dwarf_P_Marker_s structures through the

pointer marker_list. The array length is returned through the pointer

marker_count.

The call is only meaningful after a call to dwarf_transform_to_disk_form() as

the transform call creates the struct Dwarf_P_Marker_s structures, one for each

DIE generated for .debug_info (but only for DIEs that had a non-zero marker value). The

field ma_offset in the structure is set during generation of the .debug_info byte

stream. The field ma_marker in the structure is a copy of the DIE marker of the DIE

given that offset.

It returns 0, on success. On error it returns DW_DLV_BADADDR (if there are no markers

it returns DW_DLV_BADADDR).

Rev 4.2, 16 January 2021 0.3.4 - 22 -

- 23 -

5.4 Attribute Creation

The functions in this section add attributes to a DIE. These functions return a

Dwarf_P_Attribute descriptor that represents the attribute added to the given DIE.

In most cases the return value is only useful to determine if an error occurred.

Some of the attributes have values that are relocatable. They need a symbol with respect

to which the linker will perform relocation. This symbol is specified by means of an

index into the Elf symbol table for the object (of course, the symbol index can be more

general than an index).

5.4.1 dwarf_add_AT_location_expr_a()

int dwarf_add_AT_location_expr_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_P_Expr loc_expr,

Dwarf_P_Attr *attr_out,

Dwarf_Error *error)

On success the function dwarf_add_AT_location_expr_a() returns

DW_DLV_OK and adds the attribute specified by attr to the DIE descriptor given by

ownerdie. The new attribute is passed back to the caller through the pointer

attr_out.

The attribute should be one that has a location expression as its value. The location

expression that is the value is represented by the Dwarf_P_Expr descriptor

loc_expr.

If the expression has a DW_OP_addr the code simply assumes that DW_OP_addr is the

first operation and bases the only relocation that can be created on that assumption.

On error it returns DW_DLV_ERROR.

5.4.2 dwarf_add_AT_name_a()

int dwarf_add_AT_name_a(

Dwarf_P_Die ownerdie,

char *name,

Dwarf_P_Attribute * attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_name_a() adds the string specified by name as the

value of the DW_AT_name attribute for the given DIE, ownerdie. It returns

DW_DLV_OK on success and assigns the new attribute descriptor to *attr_out.

Rev 4.2, 16 January 2021 0.3.4 - 23 -

- 24 -

On error it returns DW_DLV_ERROR and does not set *attr_out.

5.4.3 dwarf_add_AT_comp_dir_a()

int dwarf_add_AT_comp_dir_a(

Dwarf_P_Die ownerdie,

char *current_working_directory,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_comp_dir_a adds the string given by

current_working_directory as the value of the DW_AT_comp_dir attribute

for the DIE described by the given ownerdie. On success it returns DW_DLV_OK and

sets *attr_out to the new attribute.

On error, it returns DW_DLV_ERROR and does not touch attr_out .

5.4.4 dwarf_add_AT_producer_a()

int dwarf_add_AT_producer_a(

Dwarf_P_Die ownerdie,

char *producer_string,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_producer_a() adds the string given by

producer_string as the value of the DW_AT_producer attribute for the DIE

given by ownerdie.

On success it returns DW_DLV_OK and returns the new attribute descriptor representing

this attribute through the pointer argument attr_out.

On error, it returns DW_DLV_ERROR.

5.4.5 dwarf_add_AT_any_value_sleb_a()

int dwarf_add_AT_any_value_sleb_a(

Dwarf_P_Die ownerdie,

Dwarf_Half attrnum,

Dwarf_Signed signed_value,

Dwarf_P_Attribute *out_attr,

Dwarf_Error *error)

The function dwarf_add_AT_any_value_sleb_a() adds the given

Dwarf_Signed value signed_value as the value of the DW_AT_const_value

attribute for the DIE described by the given ownerdie.

The FORM of the output value is DW_FORM_sdata (signed leb number) and the

Rev 4.2, 16 January 2021 0.3.4 - 24 -

- 25 -

attribute will be DW_AT_const_value.

On success it returns DW_DLV_OK and sets *out_attr to the created attribute.

On error, it returns DW_DLV_ERROR.

5.4.6 dwarf_add_AT_const_value_signedint_a()

int dwarf_add_AT_const_value_signedint_a(

Dwarf_P_Die ownerdie,

Dwarf_Signed signed_value,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_const_value_signedint_a adds the given

Dwarf_Signed value signed_value as the value of the DW_AT_const_value

attribute for the DIE described by the given ownerdie.

The FORM of the output value is DW_FORM_data<n> (signed leb number) and the

attribute will be DW_AT_const_value.

With this interface and output, there is no way for consumers to know from the FORM

that the value is signed.

On success it returns DW_DLV_OK and sets *attr_out to the created attribute.

On error, it returns DW_DLV_ERROR.

5.4.7 dwarf_add_AT_implicit_const()

int dwarf_add_AT_implicit_const(Dwarf_P_Die ownerdie,

Dwarf_Half attrnum,

Dwarf_Signed signed_value,

Dwarf_P_Attribute *outattr,

Dwarf_Error * error);

The function dwarf_add_AT_implicit_const creates a new attribute and adds

the signed value to the abbreviation entry for this new attribute and attaches the new

attribute to the DIE passed in.

The new attribute has

attrnum attribute for the DIE described by the given ownerdie. The form in the

generated attribute is DW_FORM_implicit_const. The signed_value argument

will be inserted in the abbreviation table as a signed leb value.

For a successful call the function returns DW_DLV_OK. and a pointer to the created

argument is returned through the pointer outaddr.

Rev 4.2, 16 January 2021 0.3.4 - 25 -

- 26 -

In case of error the function returns DW_DLV_ERROR and no attribute is created.

5.4.8 dwarf_add_AT_any_value_uleb_a()

int dwarf_add_AT_any_value_uleb_a(

Dwarf_P_Die ownerdie,

Dwarf_Half attrnum,

Dwarf_Unsigned unsigned_value,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_any_value_uleb_a adds the given

Dwarf_Unsigned value unsigned_value as the value of the attrnum attribute

for the DIE described by the given ownerdie.

The FORM of the output value is DW_FORM_udata (unsigned leb number) and the

attribute is attrnum.

On success it returns DW_DLV_OK and sets *attr_out to the newly created attribute.

On error, it returns DW_DLV_ERROR.

5.4.9 dwarf_add_AT_const_value_unsignedint_a()

int dwarf_add_AT_const_value_unsignedint_a(

Dwarf_P_Die ownerdie,

Dwarf_Unsigned unsigned_value,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_const_value_unsignedint_a adds the given

Dwarf_Unsigned value unsigned_value as the value of the

DW_AT_const_value attribute for the DIE described by the given ownerdie.

The FORM of the output value is DW_FORM_data<n> and the attribute will be

DW_AT_const_value.

With this interface and output, there is no way for consumers to know from the FORM

that the value is signed.

On success it returns DW_DLV_OK. and sets *attr_out to the newly created attribute.

On error, it returns DW_DLV_ERROR.

Rev 4.2, 16 January 2021 0.3.4 - 26 -

- 27 -

5.4.10 dwarf_add_AT_const_value_string_a()

int dwarf_add_AT_const_value_string_a(

Dwarf_P_Die ownerdie,

char *string_value,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_const_value_string_a() adds the string value

given by string_value as the value of the DW_AT_const_value attribute for the

DIE described by the given ownerdie.

On success it returns DW_DLV_OK *attr_out to a newly created attribute.

On error, it returns DW_DLV_ERROR.

5.4.11 dwarf_add_AT_targ_address_c()

int dwarf_add_AT_targ_address_c(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Unsigned pc_value,

Dwarf_Unsigned sym_index,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_targ_address_c() is identical to

sym_index is guaranteed to be large enough that it can contain a pointer to arbitrary

data (so the caller can pass in a real elf symbol index, an arbitrary number, or a pointer to

arbitrary data). The ability to pass in a pointer through sym_index is only usable with

DW_DLC_SYMBOLIC_RELOCATIONS.

On success the function returns DW_DLV_OK Dwarf_P_Attribute and pc_value

is put into the section stream output and the sym_index is applied to the relocation

information.

On failure it returns DW_DLV_ERROR.

Do not use this function for attr DW_AT_high_pc if the value to be recorded is an offset

(not a pc) [use dwarf_add_AT_unsigned_const_afP or

dwarf_add_AT_any_value_uleb_afP instead].

On failure the function returns DW_DLV_ERROR

Rev 4.2, 16 January 2021 0.3.4 - 27 -

- 28 -

5.4.12 dwarf_add_AT_block_a()

int dwarf_add_AT_block_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Small *block_data,

Dwarf_Unsigned block_size,

Dwarf_P_Attribute* attr_out,

Dwarf_Error *error)

This function works with all DW_FORM_block forms as well as DW_FORM_exprloc.

On success this returns DW_DLV_OK an attribute with a DW_FORM_block instance

(does not create DW_FORM_block1, DW_FORM_block2, or DW_FORM_block4 at

present) and returns a pointer to the new attribute through the pointer attr_out.

On failure this returns DW_DLV_ERROR

5.4.13 dwarf_add_AT_dataref_a()

int dwarf_add_AT_dataref_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Unsigned pc_value,

Dwarf_Unsigned sym_index,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

This is very similar to dwarf_add_AT_targ_address_b but results in a different

FORM (results in DW_FORM_data4 or DW_FORM_data8).

Useful for adding relocatable addresses in location lists.

sym_index is guaranteed to be large enough that it can contain a pointer to arbitrary

data (so the caller can pass in a real elf symbol index, an arbitrary number, or a pointer to

arbitrary data). The ability to pass in a pointer through sym_index is only usable with

DW_DLC_SYMBOLIC_RELOCATIONS.

On success it returns DW_DLV_OK and the pc_value is put into the section stream

output and the sym_index is applied to the relocation information.

Do not use this function for DW_AT_high_pc, use

dwarf_add_AT_unsigned_const or dwarf_add_AT_any_value_uleb [if

the value to be recorded is an offset of DW_AT_low_pc] or

dwarf_add_AT_targ_address_b [if the value to be recorded is an address].

Rev 4.2, 16 January 2021 0.3.4 - 28 -

- 29 -

5.4.14 dwarf_add_AT_ref_address_a

int dwarf_add_AT_ref_address_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Unsigned pc_value,

Dwarf_Unsigned sym_index,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

This is very similar to dwarf_add_AT_targ_address_c but results in a different

FORM (results in DW_FORM_ref_addr being generated).

Useful for DW_AT_type and DW_AT_import attributes.

sym_index() is guaranteed to be large enough that it can contain a pointer to

arbitrary data (so the caller can pass in a real elf symbol index, an arbitrary number, or a

pointer to arbitrary data). The ability to pass in a pointer through sym_index() is only

usable with DW_DLC_SYMBOLIC_RELOCATIONS.

On success the function returns DW_DLV_OK and pc_value is put into the section

stream output and the sym_index is applied to the relocation information.

On failure the function returns DW_DLV_ERROR.

Do not use this function for DW_AT_high_pc.

5.4.15 dwarf_add_AT_unsigned_const_a()

int dwarf_add_AT_unsigned_const_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Unsigned value,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_unsigned_const_a() adds an attribute with a

Dwarf_Unsigned value belonging to the "constant" class, to the DIE specified by

ownerdie. The object that the DIE belongs to is specified by dbg. The attribute is

specified by attr, and its value is specified by value.

The FORM of the output will be one of the DW_FORM_data<n> forms.

Rev 4.2, 16 January 2021 0.3.4 - 29 -

- 30 -

On success it returns DW_DLV_OK and sets *attr_out to the newly created attribute.

It returns DW_DLV_ERROR on error.

5.4.16 dwarf_add_AT_signed_const_a()

int dwarf_add_AT_signed_const_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Signed value,

Dwarf_P_Attribute *out_addr,

Dwarf_Error *error)

The function dwarf_add_AT_signed_const_a() adds an attribute with a

Dwarf_Signed value belonging to the "constant" class, to the DIE specified by

ownerdie. The object that the DIE belongs to is specified by dbg. The attribute is

specified by attr, and its value is specified by value.

On success it returns DW_DLV_OK and sets *out_addr with a pointer to the new

attribute.

On error it returns DW_DLV_ERROR.

5.4.17 dwarf_add_AT_reference_c()

int dwarf_add_AT_reference_c(

Dwarf_P_Debug dbg,

Dwarf_Half attr,

Dwarf_P_Die ownerdie,

Dwarf_P_Die otherdie,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

dwarf_add_AT_reference_c() accepts a NULL otherdie with the assumption

that dwarf_fixup_AT_reference_die() will be called by user code to fill in the

missing otherdie before the DIEs are transformed to disk form.

On success it returns DW_DLV_OK and returns a pointer to the new attribute through

*attr_out.

On failure it returns DW_DLV_ERROR.

Rev 4.2, 16 January 2021 0.3.4 - 30 -

- 31 -

5.4.18 dwarf_fixup_AT_reference_die()

int dwarf_fixup_AT_reference_die(

Dwarf_Half attrnum,

Dwarf_P_Die ownerdie,

Dwarf_P_Die otherdie,

Dwarf_Error *error)

The function dwarf_fixup_AT_reference_die() is provided to set the NULL

otherdie that dwarf_add_AT_reference_c() allows to the reference target

DIE. This must be done before transforming to disk form. attrnum() should be the

attribute number of the attribute of Wownerdie which is to be updated. For example, if

a local forward reference was in a WDW_AT_sibling attribute in ownerdie, pass the

value WDW_AT_sibling as attrnum.

Since no attribute number can appear more than once on a given DIE the attrnum()

suffices to uniquely identify which attribute of Wownerdie to update

It returns either DW_DLV_OK (on success) or DW_DLV_ERROR (on error). Calling this

on an attribute where otherdie was already set is an error.

5.4.19 dwarf_add_AT_flag_a()

int dwarf_add_AT_flag_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

Dwarf_Small flag,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_flag_a() adds an attribute with a Dwarf_Small

value belonging to the "flag" class, to the DIE specified by ownerdie. The object that

the DIE belongs to is specified by dbg. The attribute is specified by attr, and its value

is specified by flag.

On success it returns DW_DLV_OK and passes back a pointer to the new attribute through

*attr_out.

On error it returns DW_DLV_ERROR.

5.4.20 dwarf_add_AT_string_a()

Rev 4.2, 16 January 2021 0.3.4 - 31 -

- 32 -

int dwarf_add_AT_string_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die ownerdie,

Dwarf_Half attr,

char *string,

Dwarf_P_Attribute *attr_out,

Dwarf_Error *error)

The function dwarf_add_AT_string() adds an attribute with a value that is a

character string to the DIE specified by ownerdie. The object that the DIE belongs to

is specified by dbg. The attribute is specified by attr, and its value is pointed to by

string.

On success it returns DW_DLV_OK and set *attr_out with a pointer to the new

attribute.

On failure it returns DW_DLV_ERROR.

5.4.21 dwarf_add_AT_with_ref_sig8_a()

int dwarf_add_AT_with_ref_sig8_a(

Dwarf_P_Die ownerdie,

Dwarf_Half attrnum,

const Dwarf_Sig8 *sig8_in,

Dwarf_P_Attribute *attr_out,

Dwarf_Error * error)

The function dwarf_add_AT_with_sig8_a creates an attribute containing the

8-byte signature block pointed to by sig8_in DW_FORM_ref_sig8 with form

DW_FORM_ref_sig8.

On success it returns DW_DLV_OK and sets *attr_out *attr_out to the newly created

attribute.

On failure it returns DW_DLV_ERROR.

5.4.22 dwarf_add_AT_data16()

int dwarf_add_AT_data16(

Dwarf_P_Die ownerdie,

Dwarf_Half attrnum,

Dwarf_Form_Data16 *ptr_to_val,

Dwarf_P_Attribute * attr_out,

Dwarf_Error * error)

The DWARF5 standard refers to 16 byte as simply data. It is up to the eventual reader of

Rev 4.2, 16 January 2021 0.3.4 - 32 -

- 33 -

the DWARF entry this call creates to understand what the sixteen bytes mean.

On success it returns DW_DLV_OK and returns the new attribute through the pointer

attr_out.

On failure it returns DW_DLV_ERROR.

5.4.23 dwarf_compress_integer_block()

void* dwarf_compress_integer_block(

Dwarf_P_Debug dbg,

Dwarf_Bool unit_is_signed,

Dwarf_Small unit_length_in_bits,

void* input_block,

Dwarf_Unsigned input_length_in_units,

Dwarf_Unsigned* output_length_in_bytes_ptr,

Dwarf_Error* error)

This was created in 2016 in support of the attribute DW_AT_SUN_func_offsets but the

particular DWARF project involving this seems to have died. We hav e not provided a

way to create the attribute. So this is pretty useless at this time.

5.5 Expression Creation

The following functions are used to convert location expressions into blocks so that

attributes with values that are location expressions can store their values as a

DW_FORM_blockn value. This is for both .debug_info and .debug_loc expression

blocks.

To create an expression, first call dwarf_new_expr_a() to get a Dwarf_P_Expr

descriptor that can be used to build up the block containing the location expression. Then

insert the parts of the expression in prefix order (exactly the order they would be

interpreted in in an expression interpreter). The bytes of the expression are then built-up

as specified by the user.

5.5.1 dwarf_new_expr_a()

int dwarf_new_expr_a(

Dwarf_P_Debug dbg,

Dwarf_P_Expr *expr_out,

Dwarf_Error *error)

The function dwarf_new_expra() creates a new expression area in which a location

expression stream can be created.

Rev 4.2, 16 January 2021 0.3.4 - 33 -

- 34 -

On success it returns DW_DLV_OK and returns a Dwarf_Expr Dwarf_Expr through the

pointer which can be used to add operators a to build up a location expression.

On failure it returns DW_DLV_OK.

5.5.2 dwarf_add_expr_gen_a()

int dwarf_add_expr_gen_a(

Dwarf_P_Expr expr,

Dwarf_Small opcode,

Dwarf_Unsigned val1,

Dwarf_Unsigned val2,

Dwarf_Unsigned *stream_length_out,

Dwarf_Error *error)

The function dwarf_add_expr_gen() takes an operator specified by opcode,

along with up to 2 operands specified by val1, and val2, converts it into the Dwarf

representation and appends the bytes to the byte stream being assembled for the location

expression represented by expr. The first operand, if present, to opcode is in val1,

and the second operand, if present, is in val2. Both the operands may actually be signed

or unsigned depending on opcode.

On success it returns DW_DLV_OK and sets *stream_length_out to the number of

bytes in the byte stream for expr currently generated, i.e. after the addition of opcode.

It returns DW_DLV_ERROR on error.

The function dwarf_add_expr_gen_a() works for all opcodes except those that

have a target address as an operand. This is because the function cannot not set up a

relocation record that is needed when target addresses are involved.

5.5.3 dwarf_add_expr_addr_c()

int dwarf_add_expr_addr_c(

Dwarf_P_Expr expr,

Dwarf_Unsigned address,

Dwarf_Unsigned sym_index,

Dwarf_Unsigned *stream_length_out,

Dwarf_Error *error)

The function dwarf_add_expr_addr_c() is identical to

dwarf_add_expr_addr_b() except that dwarf_add_expr_addr_c() returns

a simple integer code.

sym_index() is guaranteed to be large enough that it can contain a pointer to

arbitrary data (so the caller can pass in a real elf symbol index, an arbitrary number, or a

pointer to arbitrary data). The ability to pass in a pointer through sym_index() is only

Rev 4.2, 16 January 2021 0.3.4 - 34 -

- 35 -

usable with DW_DLC_SYMBOLIC_RELOCATIONS.

On success the function returns DW_DLV_OK and sets *stream_length_out to to

the total length of the expression stream in expr.

On failure the function returns DW_DLV_ERROR.

5.5.4 dwarf_expr_current_offset_a()

int dwarf_expr_current_offset_a(

Dwarf_P_Expr expr,

Dwarf_Unsigned *stream_offset_out,

Dwarf_Error *error)

On success the function dwarf_expr_current_offset_a() returns DW_DLV_OK

and sets *stream_offset_out to the current length in bytes of the expression

stream.

On failure the function returns DW_DLV_ERROR.

5.5.5 dwarf_expr_into_block_a()

int dwarf_expr_into_block_a(

Dwarf_P_Expr expr,

Dwarf_Unsigned *length,

Dwarf_Small **address,

Dwarf_Error *error)

On success the function dwarf_expr_into_block_a() returns DW_DLV_OK and

sets the length of the expr expression into *length and sets the value of a pointer into

memory where the expression is currently held in the executing libdwarf into

*address.

On failure it returns DW_DLV_ERROR.

5.5.6 dwarf_expr_reset()

void dwarf_expr_reset(

Dwarf_P_Expr expr,

Dwarf_Error *error)

This resets the expression content of expr() to be empty.

5.6 Line Number Operations

These are operations on the .debug_line section. They provide information about

instructions in the program and the source lines the instruction come from. Typically,

Rev 4.2, 16 January 2021 0.3.4 - 35 -

- 36 -

code is generated in contiguous blocks, which may then be relocated as contiguous

blocks. To make the provision of relocation information more efficient, the information

is recorded in such a manner that only the address of the start of the block needs to be

relocated. This is done by providing the address of the first instruction in a block using

the function dwarf_lne_set_address(). Information about the instructions in the

block are then added using the function dwarf_add_line_entry_c(), which

specifies offsets from the address of the first instruction. The end of a contiguous block

is indicated by calling the function dwarf_lne_end_sequence().

Line number operations do not support DW_DLC_SYMBOLIC_RELOCATIONS.

5.6.1 dwarf_add_line_entry_c()

int dwarf_add_line_entry_c(

Dwarf_P_Debug dbg,

Dwarf_Unsigned file_index,

Dwarf_Addr code_offset,

Dwarf_Unsigned lineno,

Dwarf_Signed column_number,

Dwarf_Bool is_source_stmt_begin,

Dwarf_Bool is_basic_block_begin,

Dwarf_Bool is_epilogue_begin,

Dwarf_Bool is_prologue_end,

Dwarf_Unsigned isa,

Dwarf_Unsigned discriminator,

Dwarf_Error *error)

The function dwarf_add_line_entry_c() adds an entry to the section containing

information about source lines. It specifies in code_offset, the address of this line.

The function subtracts code_offset from the value given as the address of a previous

line call to compute an offset, and the offset is what is recorded in the line instructions so

no relocation will be needed on the line instruction generated.

The source file that gav e rise to the instruction is specified by file_index, the source

line number is specified by lineno, and the source column number is specified by

column_number (column numbers begin at 1) (if the source column is unknown,

specify 0). file_index is the index of the source file in a list of source files which is

built up using the function dwarf_add_file_decl().

is_source_stmt_begin is a boolean flag that is true only if the instruction at

code_address is the first instruction in the sequence generated for the source line at

lineno. Similarly, is_basic_block_begin is a boolean flag that is true only if

the instruction at code_address is the first instruction of a basic block.

is_epilogue_begin is a boolean flag that is true only if the instruction at

code_address is the first instruction in the sequence generated for the function

Rev 4.2, 16 January 2021 0.3.4 - 36 -

- 37 -

epilogue code.

Similarly, is_prolgue_end is a boolean flag that is true only if the instruction at

code_address is the last instruction of the sequence generated for the function

prologue.

isa should be zero unless the code at code_address is generated in a non-standard

isa. The values assigned to non-standard isas are defined by the compiler

implementation.

discriminator should be zero unless the line table needs to distinguish among

multiple blocks associated with the same source file, line, and column. The values

assigned to discriminator are defined by the compiler implementation.

It returns DW_DLV_OK on success, and DW_DLV_ERROR on error.

5.6.2 dwarf_lne_set_address_a()

int dwarf_lne_set_address_a(

Dwarf_P_Debug dbg,

Dwarf_Addr offs,

Dwarf_Unsigned symidx,

Dwarf_Error *error)

The function dwarf_lne_set_address_a() sets the target address at which a

contiguous block of instructions begin. Information about the instructions in the block is

added to .debug_line using calls to dwarfdwarf_add_line_entry_c() which

specifies the offset of each instruction in the block relative to the start of the block. This

is done so that a single relocation record can be used to obtain the final target address of

ev ery instruction in the block.

The relocatable address of the start of the block of instructions is specified by offs. The

symbol used to relocate the address is given by symidx, which is normally the index of

the symbol in the Elf symbol table.

It returns DW_DLV_OK on success, and DW_DLV_ERROR on error.

5.6.3 dwarf_lne_end_sequence_a()

int dwarf_lne_end_sequence_a(

Dwarf_P_Debug dbg,

Dwarf_Addr address;

Dwarf_Error *error)

The function dwarf_lne_end_sequence_a() indicates the end of a contiguous

block of instructions. address() should be just higher than the end of the last address

in the sequence of instructions. Before the next block of instructions (if any) a call to

Rev 4.2, 16 January 2021 0.3.4 - 37 -

- 38 -

dwarf_lne_set_address_a() will have to be made to set the address of the start

of the target address of the block, followed by calls to

dwarf_add_line_entry_a() for each of the instructions in the block.

It returns DW_DLV_OK on success and DW_DLV_ERROR on error.

5.6.4 dwarf_add_directory_decl_a()

int dwarf_add_directory_decl_a(

Dwarf_P_Debug dbg,

char *name,

Dwarf_Unsigned *index_in_directories,

Dwarf_Error *error)

The function dwarf_add_directory_decl() adds the string specified by name to

the list of include directories in the statement program prologue of the .debug_line

section. The string should therefore name a directory from which source files have been

used to create the present object.

On success it returns DW_DLV_OK and sets the index of the string just added, in the list

of include directories for the object. This index is then used to refer to this string. The

index is passed back through the pointer argument index_in_directories

The first successful call of this function returns one, not zero, to be consistent with the

directory indices that dwarf_add_file_decl_a() (below) expects.. DWARF5 is a

bit different. TBD FIXME

It returns DW_DLV_ERROR on error.

5.6.5 dwarf_add_file_decl_a()

int dwarf_add_file_decl_a(

Dwarf_P_Debug dbg,

char *name,

Dwarf_Unsigned dir_idx,

Dwarf_Unsigned time_mod,

Dwarf_Unsigned length,

Dwarf_Unsigned *file_entry_count_out,

Dwarf_Error *error)

The function dwarf_add_file_decl_a() adds the name of a source file that

contributed to the present object. The name of the file is specified by name (which must

not be the empty string or a null pointer, it must point to a string with length greater than

0).

In case the name is not a fully-qualified pathname, it is considered prefixed with the name

of the directory specified by dir_idx (which does not mean the name is changed or

Rev 4.2, 16 January 2021 0.3.4 - 38 -

- 39 -

physically prefixed by this producer function, we simply describe the meaning here).

dir_idx is the index of the directory to be prefixed in the list builtup using

dwarf_add_directory_decl_a(). As specified by the DWARF spec, a

dir_idx of zero will be interpreted as meaning the directory of the compilation and

another index must refer to a valid directory as FIXME

time_mod gives the time at which the file was last modified, and length gives the

length of the file in bytes.

On success, it returns DW_DLV_OK and returns the index of the source file in the list built

up so far through the pointer file_entry_count_out. This index can then be used

to refer to this source file in calls to dwarf_add_line_entry_a().

On error, it returns DW_DLV_ERROR.

5.7 Fast Access (aranges) Operations

These functions operate on the .debug_aranges section.

5.7.1 dwarf_add_arange_c()

int dwarf_add_arange_c(

Dwarf_P_Debug dbg,

Dwarf_Addr begin_address,

Dwarf_Unsigned length,

Dwarf_Unsigned symbol_index,

Dwarf_Unsigned end_symbol_index,

Dwarf_Addr offset_from_end_symbol,

Dwarf_Error *error)

The function dwarf_add_arange_c() adds another address range to be added to the

section containing address range information, .debug_aranges.

If end_symbol_index is not zero we are using two symbols to create a length

(must be DW_DLC_SYMBOLIC_RELOCATIONS to be useful)

begin_address is the offset from the symbol specified by symbol_index .

offset_from_end_symbol is the offset from the symbol specified by

end_symbol_index. length is ignored. This begin-end pair will be show up

in the relocation array returned by dwarf_get_relocation_info() as a

dwarf_drt_first_of_length_pair and

dwarf_drt_second_of_length_pair pair of relocation records. The

consuming application will turn that pair into something conceptually identical to

.word end_symbol + offset_from_end - \

(start_symbol + begin_address)

Rev 4.2, 16 January 2021 0.3.4 - 39 -

- 40 -

The reason offsets are allowed on the begin and end symbols is to allow the caller to

re-use existing labels when the labels are available and the corresponding offset is

known (economizing on the number of labels in use). The ’offset_from_end -

begin_address’ will actually be in the binary stream, not the relocation record, so the

app processing the relocation array must read that stream value into (for example)

net_offset and actually emit something like

.word end_symbol - start_symbol + net_offset

If end_symbol_index is zero we must be given a length (either

DW_DLC_STREAM_RELOCATIONS or DW_DLC_SYMBOLIC_RELOCATIONS):

The relocatable start address of the range is specified by begin_address, and the

length of the address range is specified by length. The relocatable symbol to be

used to relocate the start of the address range is specified by symbol_index,

which is normally the index of the symbol in the Elf symbol table. The

offset_from_end_symbol is ignored.

The function returns DW_DLV_OK on success and DW_DLV_ERROR on error.

5.8 DWARF5 .debug_sup section creation

The .debug_sup section (see the DWARF5 standard) enables symbolically linking two

DWARF5 object files together.

5.8.1 dwarf_add_debug_sup()

This call provides all the information that the .debug_sup section has.

int dwarf_add_debug_sup(

Dwarf_P_Debug dbg,

Dwarf_Half version,

Dwarf_Small is_supplementary,

char * filename,

Dwarf_Unsigned checksum_len,

Dwarf_Small * checksum,

Dwarf_Error *error)

On success it returns DW_DLV_OK and records the fields for creating the section.

The fields are as follows.

version should be passed in as 2.

filename must be a null-terminated string.

Rev 4.2, 16 January 2021 0.3.4 - 40 -

- 41 -

is_supplementary should be passed in as 0 or 1 depending on which type of object

file is involved (see the DWARF5 standard).

checksum must be a byte array of length checksum_len used to validate (by a

debugger) the use of the target object file.

DW_DLV_NO ENTRY is never returned.

DW_DLV_ERROR is returned in case of an error, and *error is set as usual in libdwarf.

5.9 Fast Access (pubnames) Operations

These functions operate on the .debug_pubnames section.

5.9.1 dwarf_add_pubname_a()

int dwarf_add_pubname_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *pubname_name,

Dwarf_Error *error)

It returns DW_DLV_OK on success and DW_DLV_ERROR on error.

5.10 Fast Access (pubtypes) Operations

These functions operate on the .debug_pubtypes section. An SGI-defined extension. Not

part of standard DWARF.

5.10.1 dwarf_add_pubtype_a()

int dwarf_add_pubtype_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *pubname_name,

Dwarf_Error *error)

It returns DW_DLV_OK on success and DW_DLV_ERROR on error.

5.11 Fast Access (weak names) Operations

These functions operate on the .debug_weaknames section. An SGI-defined extension.

Not part of standard DWARF.

Rev 4.2, 16 January 2021 0.3.4 - 41 -

- 42 -

5.11.1 dwarf_add_weakname_a()

int dwarf_add_weakname_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *weak_name,

Dwarf_Error *error)

It returns DW_DLV_OK on success and DW_DLV_ERROR on error.

5.12 Static Function Names Operations

The .debug_funcnames section contains the names of static function names defined in the

object, and also the offsets of the DIEs that represent the definitions of the functions in

the .debug_info section. An SGI-defined extension. Not part of standard DWARF.

5.12.1 dwarf_add_funcname_a()

int dwarf_add_funcname_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *func_name,

Dwarf_Error *error)

The function dwarf_add_funcname_a() adds the name of a static function

specified by func_name to the section containing the names of static functions defined

in the object represented by dbg. The DIE that represents the definition of the function

is specified by die.

It returns DW_DLV_OK on success.

It returns DW_DLV_ERROR on error.

5.13 File-scope User-defined Type Names Operations

The .debug_typenames section contains the names of file-scope user-defined types in the

given object, and also the offsets of the DIEs that represent the definitions of the types in

the .debug_info section. An SGI-defined extension. Not part of standard DWARF.

5.13.1 dwarf_add_typename_a()

int dwarf_add_typename_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *type_name,

Dwarf_Error *error)

This the same as dwarf_add_typename() except that on success this returns

DW_DLV_OK and on failure this returns DW_DLV_ERROR.

Rev 4.2, 16 January 2021 0.3.4 - 42 -

- 43 -

5.14 File-scope Static Variable Names Operations

The .debug_varnames section contains the names of file-scope static variables in the

given object, and also the offsets of the DIEs that represent the definition of the variables

in the .debug_info section. An SGI-defined section.

5.14.1 dwarf_add_varname_a()

int dwarf_add_varname_a(

Dwarf_P_Debug dbg,

Dwarf_P_Die die,

char *var_name,

Dwarf_Error *error)

This the same as dwarf_add_varname() except that on success this returns

DW_DLV_OK and on failure this returns DW_DLV_ERROR.

5.15 Macro Information Creation

All strings passed in by the caller are copied by these functions, so the space in which the

caller provides the strings may be ephemeral (on the stack, or immediately reused or

whatever) without this causing any difficulty.

5.15.1 dwarf_def_macro()

int dwarf_def_macro(Dwarf_P_Debug dbg,

Dwarf_Unsigned lineno,

char *name

char *value,

Dwarf_Error *error);

Adds a macro definition. The name argument should include the parentheses and

parameter names if this is a function-like macro. Neither string should contain

extraneous whitespace. dwarf_def_macro() adds the mandated space after the

name and before the value in the output DWARF section(but does not change the strings

pointed to by the arguments). If this is a definition before any files are read, lineno

should be 0. Returns DW_DLV_ERROR and sets error if there is an error. Returns

DW_DLV_OK if the call was successful.

5.15.2 dwarf_undef_macro()

int dwarf_undef_macro(Dwarf_P_Debug dbg,

Dwarf_Unsigned lineno,

char *name,

Dwarf_Error *error);

Rev 4.2, 16 January 2021 0.3.4 - 43 -

- 44 -

Adds a macro un-definition note. If this is a definition before any files are read, lineno

should be 0. Returns DW_DLV_ERROR and sets error if there is an error. Returns

DW_DLV_OK if the call was successful.

5.15.3 dwarf_start_macro_file()

int dwarf_start_macro_file(Dwarf_P_Debug dbg,

Dwarf_Unsigned lineno,

Dwarf_Unsigned fileindex,

Dwarf_Error *error);

fileindex is an index in the .debug_line header: the index of the file name. See the

function dwarf_add_file_decl(). The lineno should be 0 if this file is the file

of the compilation unit source itself (which, of course, is not a #include in any file).

Returns DW_DLV_ERROR and sets error if there is an error. Returns DW_DLV_OK if

the call was successful.

5.15.4 dwarf_end_macro_file()

int dwarf_end_macro_file(Dwarf_P_Debug dbg,

Dwarf_Error *error);

Returns DW_DLV_ERROR and sets error if there is an error. Returns DW_DLV_OK if

the call was successful.

5.15.5 dwarf_vendor_ext()

int dwarf_vendor_ext(Dwarf_P_Debug dbg,

Dwarf_Unsigned constant,

char * string,

Dwarf_Error* error);

The meaning of the constant and thestring in the macro info section are undefined

by DWARF itself, but the string must be an ordinary null terminated string. This call is

not an extension to DWARF. It simply enables storing macro information as specified in

the DWARF document. Returns DW_DLV_ERROR and sets error if there is an error.

Returns DW_DLV_OK if the call was successful.

5.16 Low Lev el (.debug_frame) operations

These functions operate on the .debug_frame section. Refer to libdwarf.h for the

register names and register assignment mapping. Both of these are necessarily machine

dependent.

Rev 4.2, 16 January 2021 0.3.4 - 44 -

- 45 -

5.16.1 dwarf_new_fde_a()

int dwarf_new_fde_a(

Dwarf_P_Debug dbg,

Dwarf_P_Fde *fde_out,

Dwarf_Error *error)

On success the function dwarf_new_fde_a() returns DW_DLV_OK and returns a

pointer to the fde through fde_out. The descriptor should be used to build a complete

FDE. Subsequent calls to routines that build up the FDE should use the same

Dwarf_P_Fde descriptor.

It returns DW_DLV_ERROR on error.

5.16.2 dwarf_add_frame_cie_a()

int dwarf_add_frame_cie_a(

Dwarf_P_Debug dbg,

char *augmenter,

Dwarf_Small code_align,

Dwarf_Small data_align,

Dwarf_Small ret_addr_reg,

Dwarf_Ptr init_bytes,

Dwarf_Unsigned init_bytes_len,

Dwarf_Unsigned *cie_index_out,

Dwarf_Error *error);

On success The function dwarf_add_frame_cie_a() returns DW_DLV_OK, creates

a CIE, and returns an index to it through the pointer cie_index_out.

CIEs are used by FDEs to setup initial values for frames. The augmentation string for the

CIE is specified by augmenter. The code alignment factor, data alignment factor, and

the return address register for the CIE are specified by code_align, data_align,

and ret_addr_reg respectively. init_bytes points to the bytes that represent the

instructions for the CIE being created, and init_bytes_len specifies the number of

bytes of instructions.

There is no convenient way to generate the init_bytes stream. One just has to

calculate it by hand or separately generate something with the correct sequence and use

dwarfdump -v and readelf (or objdump) and some kind of hex dumper to see the bytes.

This is a serious inconvenience!

On error it returns DW_DLV_ERROR.

5.16.3 dwarf_add_frame_fde_c()

Rev 4.2, 16 January 2021 0.3.4 - 45 -

- 46 -

int dwarf_add_frame_fde_c(

Dwarf_P_Debug dbg,

Dwarf_P_Fde fde,

Dwarf_P_Die die,

Dwarf_Unsigned cie,

Dwarf_Addr virt_addr,

Dwarf_Unsigned code_len,

Dwarf_Unsigned sym_idx,

Dwarf_Unsigned sym_idx_of_end,

Dwarf_Addr offset_from_end_sym,

Dwarf_Unsigned *index_to_fde,

Dwarf_Error* error)

This function is like dwarf_add_frame_fde() except that

dwarf_add_frame_fde_c() has new arguments to allow use with

DW_DLC_SYMBOLIC_RELOCATIONS and a new argument to return the fde index..

The function dwarf_add_frame_fde_c() adds the FDE specified by fde to the list

of FDEs for the object represented by the given dbg.

die specifies the DIE that represents the function whose frame information is specified

by the given fde. If the MIPS/IRIX specific DW_AT_MIPS_fde attribute is not needed

in .debug_info pass in 0 as the die argument.

cie specifies the index of the CIE that should be used to setup the initial conditions for

the given frame. virt_addr represents the relocatable address at which the code for

the given function begins, and sym_idx gives the index of the relocatable symbol to be

used to relocate this address (virt_addr that is). code_len specifies the size in

bytes of the machine instructions for the given function.

If sym_idx_of_end is zero (may be DW_DLC_STREAM_RELOCATIONS or

DW_DLC_SYMBOLIC_RELOCATIONS):

virt_addr represents the relocatable address at which the code for the given

function begins, and sym_idx gives the index of the relocatable symbol to be used

to relocate this address (virt_addr that is). code_len specifies the size in

bytes of the machine instructions for the given function. sym_idx_of_end and

offset_from_end_sym are unused.

If sym_idx_of_end is non-zero (must be DW_DLC_SYMBOLIC_RELOCATIONS to

be useful):

virt_addr is the offset from the symbol specified by sym_idx .

Rev 4.2, 16 January 2021 0.3.4 - 46 -

- 47 -

offset_from_end_sym is the offset from the symbol specified by

sym_idx_of_end. code_len is ignored. This begin-end pair will be show up

in the relocation array returned by dwarf_get_relocation_info() as a

dwarf_drt_first_of_length_pair and

dwarf_drt_second_of_length_pair pair of relocation records. The

consuming application will turn that pair into something conceptually identical to

.word end_symbol + begin - \

(start_symbol + offset_from_end)

The reason offsets are allowed on the begin and end symbols is to allow the caller to

re-use existing labels when the labels are available and the corresponding offset is

known (economizing on the number of labels in use). The ’offset_from_end -

begin_address’ will actually be in the binary stream, not the relocation record, so the

app processing the relocation array must read that stream value into (for example)

net_offset and actually emit something like

.word end_symbol - start_symbol + net_offset

On success it returns DW_DLV_OK and returns index to the given fde through the

pointer index_to_fde.

On error, it returns DW_DLV_ERROR.

5.16.4 dwarf_add_frame_info_c()

int dwarf_add_frame_info_c(

Dwarf_P_Debug dbg,

Dwarf_P_Fde fde,

Dwarf_P_Die die,

Dwarf_Unsigned cie,

Dwarf_Addr virt_addr,

Dwarf_Unsigned code_len,

Dwarf_Unsigned sym_idx,

Dwarf_Unsigned end_symbol_index,

Dwarf_Addr offset_from_end_symbol,

Dwarf_Signed offset_into_exception_tables,

Dwarf_Unsigned exception_table_symbol,

Dwarf_Unsigned *index_to_fde,

Dwarf_Error* error)

On success The function dwarf_add_frame_fde_c() returns DW_DLV_OK, adds

the FDE specified by fde to the list of FDEs for the object represented by the given dbg,

and. passes the index of the fde back through the pointer index_to_fde

Rev 4.2, 16 January 2021 0.3.4 - 47 -

- 48 -

On failure it returns DW_DLV_ERROR.

5.16.5 dwarf_fde_cfa_offset_a()

int dwarf_fde_cfa_offset_a(Dwarf_P_Fde fde,

Dwarf_Unsigned reg,

Dwarf_Signed offset,

Dwarf_Error *error)

The function dwarf_fde_cfa_offset() appends a DW_CFA_offset operation to

the FDE, specified by fde, being constructed. The first operand of the

DW_CFA_offset operation is specified by reg. The register specified should not

exceed 6 bits. The second operand of the DW_CFA_offset operation is specified by

offset.

It returns DW_DLV_OK on success.

It returns DW_DLV_ERROR on error.

5.16.6 dwarf_add_fde_inst_a()

int dwarf_add_fde_inst_a(

Dwarf_P_Fde fde,

Dwarf_Small op,

Dwarf_Unsigned val1,

Dwarf_Unsigned val2,

Dwarf_Error *error)

The function dwarf_add_fde_inst() adds the operation specified by op to the

FDE specified by fde. Up to two operands can be specified in val1, and val2. Based

on the operand specified Libdwarf decides how many operands are meaningful for the

operand. It also converts the operands to the appropriate datatypes (they are passed to

dwarf_add_fde_inst as Dwarf_Unsigned).

It returns DW_DLV_OK on success.

It returns DW_DLV_ERROR on error.

5.16.7 dwarf_insert_fde_inst_bytes()

int dwarf_insert_fde_inst_bytes(

Dwarf_P_Debug dbg,

Dwarf_P_Fde fde,

Dwarf_Unsigned len,

Dwarf_Ptr ibytes,

Dwarf_Error *error)

The function dwarf_insert_fde_inst_bytes() inserts the byte array (pointed at

by ibytes and of length len) of frame instructions into the fde fde. It is incompatible

Rev 4.2, 16 January 2021 0.3.4 - 48 -

- 49 -

with dwarf_add_fde_inst(), do not use both functions on any giv en

Dwarf_P_Debug. At present it may only be called once on a given fde. The len bytes

ibytes may be constructed in any way, but the assumption is they were copied from an

object file such as is returned by the libdwarf consumer function

dwarf_get_fde_instr_bytes.

It returns DW_DLV_OK on success, and DW_DLV_ERROR on error.

Rev 4.2, 16 January 2021 0.3.4 - 49 -

CONTENTS

1. INTRODUCTION .. 1

1.1 Copyright ... 1

1.2 Purpose and Scope ... 1

1.3 Document History .. 2

1.4 Definitions .. 2

1.5 Overview .. 3

1.6 Revision History .. 3

2. Type Definitions ... 4

2.1 General Description ... 4

2.2 Namespace issues ... 5

3. libdwarf and Elf and relocations .. 5

3.1 binary or assembler output ... 5

3.2 libdwarf relationship to Elf .. 5

3.3 libdwarf and relocations ... 6

3.4 symbols, addresses, and offsets ... 6

4. Memory Management .. 6

4.1 Read Only Properties ... 7

4.2 Storage Deallocation .. 7

4.3 Error Handling ... 7

5. Functional Interface .. 7

5.1 Initialization and Termination Operations ... 7

5.1.1 dwarf_producer_init() ... 8

5.1.2 dwarf_pro_set_default_string_form() 12

5.1.3 dwarf_transform_to_disk_form_a() .. 13

5.1.4 dwarf_get_section_bytes_a() .. 14

5.1.5 dwarf_get_relocation_info_count() .. 15

5.1.6 dwarf_get_relocation_info() ... 16

5.1.7 dwarf_reset_section_bytes() ... 18

5.1.8 dwarf_pro_get_string_stats() .. 18

5.1.9 dwarf_producer_finish_a() ... 19

5.2 Debugging Information Entry Creation ... 19

5.2.1 dwarf_add_die_to_debug_a() ... 19

5.2.2 dwarf_new_die_a() ... 19

5.2.3 dwarf_die_link_a() .. 20

5.3 DIE Markers ... 21

i

5.3.1 dwarf_add_die_marker_a() ... 21

5.3.2 dwarf_get_die_marker_a() .. 21

5.3.3 dwarf_get_die_markers_a() .. 21

5.4 Attribute Creation .. 23

5.4.1 dwarf_add_AT_location_expr_a() .. 23

5.4.2 dwarf_add_AT_name_a() ... 23

5.4.3 dwarf_add_AT_comp_dir_a() ... 24

5.4.4 dwarf_add_AT_producer_a() .. 24

5.4.5 dwarf_add_AT_any_value_sleb_a() 24

5.4.6 dwarf_add_AT_const_value_signedint_a() 25

5.4.7 dwarf_add_AT_implicit_const() ... 25

5.4.8 dwarf_add_AT_any_value_uleb_a() 26

5.4.9 dwarf_add_AT_const_value_unsignedint_a() 26

5.4.10 dwarf_add_AT_const_value_string_a() 27

5.4.11 dwarf_add_AT_targ_address_c() .. 27

5.4.12 dwarf_add_AT_block_a() ... 28

5.4.13 dwarf_add_AT_dataref_a() ... 28

5.4.14 dwarf_add_AT_ref_address_a .. 29

5.4.15 dwarf_add_AT_unsigned_const_a() 29

5.4.16 dwarf_add_AT_signed_const_a() ... 30

5.4.17 dwarf_add_AT_reference_c() ... 30

5.4.18 dwarf_fixup_AT_reference_die() ... 31

5.4.19 dwarf_add_AT_flag_a() .. 31

5.4.20 dwarf_add_AT_string_a() ... 31

5.4.21 dwarf_add_AT_with_ref_sig8_a() .. 32

5.4.22 dwarf_add_AT_data16() ... 32

5.4.23 dwarf_compress_integer_block() ... 33

5.5 Expression Creation ... 33

5.5.1 dwarf_new_expr_a() ... 33

5.5.2 dwarf_add_expr_gen_a() .. 34

5.5.3 dwarf_add_expr_addr_c() ... 34

5.5.4 dwarf_expr_current_offset_a() ... 35

5.5.5 dwarf_expr_into_block_a() ... 35

5.5.6 dwarf_expr_reset() .. 35

5.6 Line Number Operations .. 35

5.6.1 dwarf_add_line_entry_c() ... 36

5.6.2 dwarf_lne_set_address_a() ... 37

5.6.3 dwarf_lne_end_sequence_a() ... 37

5.6.4 dwarf_add_directory_decl_a() .. 38

5.6.5 dwarf_add_file_decl_a() ... 38

ii

5.7 Fast Access (aranges) Operations .. 39

5.7.1 dwarf_add_arange_c() .. 39

5.8 DWARF5 .debug_sup section creation .. 40

5.8.1 dwarf_add_debug_sup() ... 40

5.9 Fast Access (pubnames) Operations .. 41

5.9.1 dwarf_add_pubname_a() .. 41

5.10 Fast Access (pubtypes) Operations .. 41

5.10.1 dwarf_add_pubtype_a() .. 41

5.11 Fast Access (weak names) Operations ... 41

5.11.1 dwarf_add_weakname_a() .. 42

5.12 Static Function Names Operations ... 42

5.12.1 dwarf_add_funcname_a() ... 42

5.13 File-scope User-defined Type Names Operations 42

5.13.1 dwarf_add_typename_a() ... 42

5.14 File-scope Static Variable Names Operations 43

5.14.1 dwarf_add_varname_a() ... 43

5.15 Macro Information Creation .. 43

5.15.1 dwarf_def_macro() ... 43

5.15.2 dwarf_undef_macro() ... 43

5.15.3 dwarf_start_macro_file() .. 44

5.15.4 dwarf_end_macro_file() ... 44

5.15.5 dwarf_vendor_ext() ... 44

5.16 Low Lev el (.debug_frame) operations ... 44

5.16.1 dwarf_new_fde_a() ... 45

5.16.2 dwarf_add_frame_cie_a() ... 45

5.16.3 dwarf_add_frame_fde_c() .. 45

5.16.4 dwarf_add_frame_info_c() ... 47

5.16.5 dwarf_fde_cfa_offset_a() .. 48

5.16.6 dwarf_add_fde_inst_a() .. 48

5.16.7 dwarf_insert_fde_inst_bytes() .. 48

iii

A Producer Library Interface to DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to create DWARF

debugging information entries and DWARF line number information. It does not

make recommendations as to how the functions described in this document should

be implemented nor does it suggest possible optimizations.

The document is oriented to creating DWARF version 2. Support for creating

DWARF3 and DWARF4 and DWARF5 is only partial: various features since

DWARF2 cannot be created.

Rev 4.2, 16 January 2021 0.3.4

iv

