OFELI's Logo

An Object Oriented Finite Element Library

Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 CBiotSavartClass to compute the magnetic induction from the current density using the Biot-Savart formula
 CDomainTo store and treat finite element geometric information
 CEdgeTo describe an edge
 CEdgeListClass to construct a list of edges having some common properties
 CEigenProblemSolverClass to find eigenvalues and corresponding eigenvectors of a given matrix in a generalized eigenproblem, i.e. Find scalars l and non-null vectors v such that [K]{v} = l[M]{v} where [K] and [M] are symmetric matrices. The eigenproblem can be originated from a PDE. For this, we will refer to the matrices K and M as Stiffness and Mass matrices respectively
 CElementTo store and treat finite element geometric information
 CElementListClass to construct a list of elements having some common properties
 CEquaMother abstract class to describe equation
 CEquation< 3, 3, 2, 2 >
 CEquation< NEN_, NEE_, NSN_, NSE_ >Abstract class for all equation classes
 CFastMarchingClass for the fast marching algorithm on uniform grids
 CFastMarching1DGClass for the fast marching algorithm on 1-D uniform grids
 CFastMarching2DGClass for the fast marching algorithm on 2-D uniform grids
 CFastMarching3DGClass for the fast marching algorithm on 3-D uniform grids
 CSteklovPoincare2DBESolver of the Steklov Poincare problem in 2-D geometries using piecewie constant boundary elemen
 CEstimatorTo calculate an a posteriori estimator of the solution
 CFEShapeParent class from which inherit all finite element shape classes
 CHexa8Defines a three-dimensional 8-node hexahedral finite element using Q1-isoparametric interpolation
 CLine2To describe a 2-Node planar line finite element
 CLine3To describe a 3-Node quadratic planar line finite element
 CPenta6Defines a 6-node pentahedral finite element using P1 interpolation in local coordinates (s.x,s.y) and Q1 isoparametric interpolation in local coordinates (s.x,s.z) and (s.y,s.z)
 CQuad4Defines a 4-node quadrilateral finite element using Q1 isoparametric interpolation
 CTetra4Defines a three-dimensional 4-node tetrahedral finite element using P1 interpolation
 CtriangleDefines a triangle. The reference element is the rectangle triangle with two unit edges
 CFigureTo store and treat a figure (or shape) information
 CBrickTo store and treat a brick (parallelepiped) figure
 CCircleTo store and treat a circular figure
 CEllipseTo store and treat an ellipsoidal figure
 CPolygonTo store and treat a polygonal figure
 CRectangleTo store and treat a rectangular figure
 CSphereTo store and treat a sphere
 CTriangleTo store and treat a triangle
 CFunctA simple class to parse real valued functions
 CGaussCalculate data for Gauss integration
 CGridTo manipulate structured grids
 CIntegrationClass for numerical integration methods
 CIOFieldEnables working with files in the XML Format
 CIPFTo read project parameters from a file in IPF format
 CIter< T_ >Class to drive an iterative process
 CIter< real_t >
 CLinearSolverClass to solve systems of linear equations by direct or iterative methods
 CLocalMatrix< T_, NR_, NC_ >Handles small size matrices like element matrices, with a priori known size
 CLocalMatrix< real_t, 2, 2 >
 CLocalVect< T_, N_ >Handles small size vectors like element vectors
 CLocalVect< OFELI::Point< real_t >, 3 >
 CLocalVect< real_t, 3 >
 CLocalVect< size_t, 2 >
 CLocalVect< size_t, 3 >
 CLPSolverTo solve a linear programming problem
 CMaterialTo treat material data. This class enables reading material data in material data files. It also returns these informations by means of its members
 CMatrix< T_ >Virtual class to handle matrices for all storage formats
 CBMatrix< T_ >To handle band matrices
 CDMatrix< T_ >To handle dense matrices
 CDSMatrix< T_ >To handle symmetric dense matrices
 CSkMatrix< T_ >To handle square matrices in skyline storage format
 CSkSMatrix< T_ >To handle symmetric matrices in skyline storage format
 CSpMatrix< T_ >To handle matrices in sparse storage format
 CTrMatrix< T_ >To handle tridiagonal matrices
 CMatrix< real_t >
 CBMatrix< real_t >
 CDMatrix< real_t >
 CDSMatrix< real_t >
 CSpMatrix< real_t >
 CMeshTo store and manipulate finite element meshes
 CMeshAdaptTo adapt mesh in function of given solution
 CMusclParent class for hyperbolic solvers with Muscl scheme
 CMuscl1DClass for 1-D hyperbolic solvers with Muscl scheme
 CMuscl2DTClass for 2-D hyperbolic solvers with Muscl scheme
 CMuscl3DTClass for 3-D hyperbolic solvers with Muscl scheme using tetrahedra
 CMyNLASAbstract class to define by user specified function
 CMyOptAbstract class to define by user specified optimization function
 CNLASSolverTo solve a system of nonlinear algebraic equations of the form f(u) = 0
 CNodeTo describe a node
 CNodeListClass to construct a list of nodes having some common properties
 CODESolverTo solve a system of ordinary differential equations
 COptSolverTo solve an optimization problem with bound constraints
 CPartitionTo partition a finite element mesh into balanced submeshes
 CPhaseChangeThis class enables defining phase change laws for a given material
 CPoint< T_ >Defines a point with arbitrary type coordinates
 CPoint2D< T_ >Defines a 2-D point with arbitrary type coordinates
 CPoint< int >
 CPoint< real_t >
 CPoint< size_t >
 CPrec< T_ >To set a preconditioner
 CPrec< real_t >
 CPrescriptionTo prescribe various types of data by an algebraic expression. Data may consist in boundary conditions, forces, tractions, fluxes, initial condition. All these data types can be defined through an enumerated variable
 CReconstructionTo perform various reconstruction operations
 CSideTo store and treat finite element sides (edges in 2-D or faces in 3-D)
 CSideListClass to construct a list of sides having some common properties
 CTabulationTo read and manipulate tabulated functions
 CTimerTo handle elapsed time counting
 CTimeSteppingTo solve time stepping problems, i.e. systems of linear ordinary differential equations of the form [A2]{y"} + [A1]{y'} + [A0]{y} = {b}
 CVect< T_ >To handle general purpose vectors
 CVect< complex_t >
 CVect< OFELI::Point< real_t > >
 CVect< real_t >





Copyright © 1998-2023 Rachid Touzani