
Installation Guide for sundials v5.4.0

Eddy Banks, Aaron M. Collier, David J. Gardner, Alan C. Hindmarsh,
Radu Serban, and Carol S. Woodward

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

September 23, 2020

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The cur-
rent SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R.
Reynolds, and Carol S. Woodward. We thank Radu Serban for significant and critical past contribu-
tions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee,
Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz,
Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White,
Ting Yan, and Ulrike M. Yang.

Contents

1 SUNDIALS Package Installation Procedure 1
1.1 CMake-based installation . 2
1.2 Building and Running Examples . 15
1.3 Configuring, building, and installing on Windows . 15
1.4 Installed libraries and exported header files . 16

5

Chapter 1

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the sundi-
als sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE INSTALL LIBDIR, with instdir and
CMAKE INSTALL LIBDIR specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

• The installation directory instdir can not be the same as the source directory solverdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists.txt files

1

and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

1.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 3.1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

1.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The instdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

2

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure 1.1.

Figure 1.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure 1.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

3

Figure 1.2: Changing the instdir for sundials and corresponding examples

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../solverdir

% make

% make install

1.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

4

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g

CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

5

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or LAPACK support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported sundials header files and libraries will be installed under subdirectories include and
CMAKE INSTALL LIBDIR of CMAKE INSTALL PREFIX, respectively.

CMAKE INSTALL LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE INSTALL PREFIX that the sundials libraries will be
installed under. The default is automatically set based on the operating system using the
GNUInstallDirs CMake module.

Fortran INSTALL MODDIR - Fortran module installation directory
Default: fortran

CUDA ENABLE - Build the sundials cuda modules.
Default: OFF

CUDA ARCH - Specifies the CUDA architecture to compile for.
Default: sm 30

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF unless Trilinos ENABLE is ON.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F90 - Build the sundials Fortran90 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F2003 - Build the sundials Fortran2003 examples
Default: ON (if F2003 INTERFACE ENABLE is ON)

6

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

F77 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 77 interfaces
Default: OFF

F2003 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 2003 interfaces
Default: OFF

HYPRE ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in 1.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

KLU ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in 1.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in 1.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

MPI ENABLE - Enable MPI support. This will build the parallel nvector and the MPI-aware version
of the ManyVector library.
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI C COMPILER - mpicc program
Default:

MPI CXX COMPILER - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and C++ examples are

7

enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than MPI ENABLE.

MPI Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and Fortran-C support
is enabled (F77 INTERFACE ENABLE or F2003 INTERFACE ENABLE is ON).

MPIEXEC EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

OPENMP DEVICE ENABLE - Enable OpenMP device offloading (build the OpenMPDEV nvector) if sup-
ported by the provided compiler.
Default: OFF

SKIP OPENMP DEVICE CHECK - advanced option - Skip the check done to see if the OpenMP provided
by the compiler supports OpenMP device offloading.
Default: OFF

PETSC ENABLE - Enable petsc support
Default: OFF
Note: See additional information on building with petsc enabled in ??.

PETSC DIR - Path to petsc installation
Default:

PETSC LIBRARIES - advanced option - Semi-colon separated list of PETSc link libraries. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

PETSC INCLUDES - advanced option - Semi-colon separated list of PETSc include directories. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

PTHREAD ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA ENABLE - Enable raja support (build the raja nvector).
Default: OFF
Note: You need to enable cuda in order to build the raja vector module.

SUNDIALS BUILD WITH MONITORING - Build sundials with capabilties for fine-grained monitoring of
solver progress and statistics. This is primarily useful for debugging.
Default: OFF
Note: Building with monitoring may result in minor performance degradation even if monitoring
is not utilized.

SUNDIALS BUILD PACKAGE FUSED KERNELS - Build specialized fused kernels inside cvode.
Default: OFF
Note: This option is currently only available when building with CUDA ENABLE = ON. Building
with fused kernels requires linking to either libsundials cvode fused cuda.lib or libsundials cvode fused stubs.lib,
where the latter provides CPU-only placeholders for the fused routines, in addition to libsundials cvode.lib.

8

SUNDIALS F77 FUNC CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (lower) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC UNDERSCORES must also be set.

SUNDIALS F77 FUNC UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC CASE must also be set.

SUNDIALS INDEX TYPE - advanced option - Integer type used for sundials indices. The size must
match the size provided for the
SUNDIALS INDEX SIZE option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64 T to use 64-bit integers,
or INT32 T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS INDEX SIZE

option in most cases.

SUNDIALS INDEX SIZE - Integer size (in bits) used for indices in sundials, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64 t, int64, long long, and long. Candidate
32-bit integers are (in order of preference): int32 t, int, and long. The advanced option,
SUNDIALS INDEX TYPE can be used to provide a type not listed here.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUPERLUDIST ENABLE - Enable SuperLU DIST support
Default: OFF
Note: See additional information on building with SuperLU DIST enabled in 1.1.4.

SUPERLUDIST INCLUDE DIR - Path to SuperLU DIST header files (typically SRC directory)

SUPERLUDIST LIBRARY DIR - Path to SuperLU DIST installed library files

SUPERLUDIST LIBRARIES - Semi-colon separated list of libraries needed for SuperLU DIST

SUPERLUDIST OpenMP - Enable sundials support for SuperLU DIST built with OpenMP
Default: OFF
Note: SuperLU DIST must be built with OpenMP support for this option to function properly.
Additionally the environment variable OMP NUM THREADS must be set to the desired number of
threads.

SUPERLUMT ENABLE - Enable superlumt support
Default: OFF
Note: See additional information on building with superlumt enabled in 1.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

9

SUPERLUMT LIBRARIES - Semi-colon separated list of libraries needed for SuperLU MT

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

Trilinos ENABLE - Enable Trilinos support (build the Tpetra nvector).
Default: OFF

Trilinos DIR - Path to the Trilinos install directory.
Default:

TRILINOS INTERFACE C COMPILER - advanced option - Set the C compiler for building the Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C COMPILER or MPI C COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE C COMPILER FLAGS - advanced option - Set the C compiler flags for Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C FLAGS if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same flags that were used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER - advanced option - Set the C++ compiler for builing Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX COMPILER or MPI CXX COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER FLAGS - advanced option - Set the C++ compiler flags for Trili-
nos interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX FLAGS if USE XSDK DEFAULTS=ON.
Note: Is is recommended to use the same flags that were used to build the Trilinos library.

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

sundials supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE XSDK DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding sundials option and may!

have different default values (see details below). As such the equivalent sundials options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE XSDK DEFAULTS to ON will hide the corresponding sundials options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
sundials options that are replaced. Below is a complete list xSDK options and the corresponding
sundials options if applicable.

TPL ENABLE HYPRE - Enable hypre support
Default: OFF
sundials equivalent: HYPRE ENABLE

TPL ENABLE KLU - Enable KLU support
Default: OFF
sundials equivalent: KLU ENABLE

10

TPL ENABLE PETSC - Enable petsc support
Default: OFF
sundials equivalent: PETSC ENABLE

TPL ENABLE LAPACK - Enable LAPACK support
Default: OFF
sundials equivalent: LAPACK ENABLE

TPL ENABLE SUPERLUDIST - Enable SuperLU DIST support
Default: OFF
sundials equivalent: SUPERLUDIST ENABLE

TPL ENABLE SUPERLUMT - Enable SuperLU MT support
Default: OFF
sundials equivalent: SUPERLUMT ENABLE

TPL HYPRE INCLUDE DIRS - Path to hypre header files
sundials equivalent: HYPRE INCLUDE DIR

TPL HYPRE LIBRARIES - hypre library
sundials equivalent: N/A

TPL KLU INCLUDE DIRS - Path to KLU header files
sundials equivalent: KLU INCLUDE DIR

TPL KLU LIBRARIES - KLU library
sundials equivalent: N/A

TPL LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
sundials equivalent: LAPACK LIBRARIES

Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL PETSC DIR - Path to petsc installation
sundials equivalent: PETSC DIR

TPL SUPERLUDIST INCLUDE DIRS - Path to SuperLU DIST header files
sundials equivalent: SUPERLUDIST INCLUDE DIR

TPL SUPERLUDIST LIBRARIES - Semi-colon separated list of libraries needed for SuperLU DIST in-
cluding the SuperLU DIST library itself
sundials equivalent: SUPERLUDIST LIBRARIES

TPL SUPERLUDIST OPENMP - Enable sundials support for SuperLU DIST built with OpenMP
sundials equivalent: SUPERLUDIST OPENMP

TPL SUPERLUMT LIBRARIES - SuperLU MT library
sundials equivalent: N/A

TPL SUPERLUMT THREAD TYPE - SuperLU MT library thread type
sundials equivalent: SUPERLUMT THREAD TYPE

USE XSDK DEFAULTS - Enable xSDK default configuration settings
Default: OFF
sundials equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE BUILD TYPE to Debug

11

XSDK ENABLE FORTRAN - Enable sundials Fortran interfaces
Default: OFF
sundials equivalent: F77 INTERFACE ENABLE/F2003 INTERFACE ENABLE

XSDK INDEX SIZE - Integer size (bits) used for indices in sundials, options are: 32 or 64
Default: 32
sundials equivalent: SUNDIALS INDEX SIZE

XSDK PRECISION - Precision used in sundials, options are: double, single, or quad
Default: double
sundials equivalent: SUNDIALS PRECISION

1.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/solverdir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/solverdir

%

% make install

%

1.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library any external libraries used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag.!

Building with LAPACK

To enable LAPACK, set the LAPACK ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the desired
libraries rquired for LAPACK.

12

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DLAPACK_ENABLE=ON \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

%

% make install

%

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-
tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 5.7.2. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the vari-
able SUPERLUMT LIBRARIES must be set to a semi-colon separated list of other libraries SuperLU MT
depends on. For example, if SuperLU MT ws build with an external blas library, then include the full
path to the blas library in this list. Additionally, the variable SUPERLUMT THREAD TYPE must be set
to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type. !

Building with SuperLU DIST

The SuperLU DIST libraries are available for download from the Lawrence Berkeley National Lab-
oratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu dist. sundials has
been tested with SuperLU DIST 6.1.1. To enable SuperLU DIST, set SUPERLUDIST ENABLE to ON, set
SUPERLUDIST INCLUDE DIR to the include directory of the SuperLU DIST installation (typically SRC),
and set the variable
SUPERLUDIST LIBRARY DIR to the path to library directory of the SuperLU DIST installation (typ-
ically lib). At the same time, the variable SUPERLUDIST LIBRARIES must be set to a semi-colon
separated list of other libraries SuperLU DIST depends on. For example, if SuperLU DIST was built
with LAPACK, then include the LAPACK library in this list. If SuperLU DIST was built with
OpenMP support, then you may set SUPERLUDIST OPENMP to ON to utilize the OpenMP functionality
of SuperLU DIST.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having PTHREAD ENABLE set to ON then SuperLU DIST should not be set to use OpenMP. !

13

Building with PETSc

The petsc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.gov/petsc.
sundials has been tested with petsc version 3.10.0–3.13.4. To enable petsc, set PETSC ENABLE to
ON and then set PETSC DIR to the path of the petsc installation. Alternatively, a user can provide
a list of include paths in PETSC INCLUDES, and a list of complete paths to the libraries needed in
PETSC LIBRARIES.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computing.llnl.gov/projects/hypre. sundials has been tested with hypre ver-
sion 2.14.0–2.19.0. To enable hypre, set HYPRE ENABLE to ON, set HYPRE INCLUDE DIR to the include

path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

Note: sundials must be configured so that SUNDIALS INDEX SIZE (or equivalently, XSDK INDEX SIZE)
equals the precision of HYPRE BigInt in the corresponding hypre installation.

Building with CUDA

sundials cuda modules and examples have been tested with versions 9 through 11.0.2 of the cuda
toolkit. To build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are avail-
able for download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads.
To enable cuda, set CUDA ENABLE to ON. If cuda is installed in a nonstandard location, you may be
prompted to set the variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To
enable cuda examples, set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

raja is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. sundials raja modules and examples have
been tested with raja up to version 0.12.1. Building sundials raja modules requires a cuda-enabled
raja installation. To enable raja, set CUDA ENABLE and RAJA ENABLE to ON. If raja is installed in a
nonstandard location you will be prompted to set the variable RAJA DIR with the path to the raja
CMake configuration file. To enable building the raja examples set EXAMPLES ENABLE CUDA to ON.

Building with Trilinos

Trilinos is a suite of numerical libraries developed by Sandia National Laboratories. It can be obtained
at https://github.com/trilinos/Trilinos. sundials Trilinos modules and examples have been
tested with Trilinos version 12.14.1 – 12.18.1. To enable Trilinos, set Trilinos ENABLE to ON. If
Trilinos is installed in a nonstandard location you will be prompted to set the variable Trilinos DIR

with the path to the Trilinos CMake configuration file. It is desireable to build the Trilinos vector
interface with same compiler and options that were used to build Trilinos. CMake will try to find the
correct compiler settings automatically from the Trilinos configuration file. If that is not successful,
the compilers and options can be manually set with the following CMake variables:

• Trilinos INTERFACE C COMPILER

• Trilinos INTERFACE C COMPILER FLAGS

• Trilinos INTERFACE CXX COMPILER

• Trilinos INTERFACE CXX COMPILER FLAGS

14

1.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

1.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile

files if on Linux/Unix) that reference the installed sundials headers and libraries.
Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as

well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc. !

1.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

15

1.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE INSTALL LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside
under libdir/CMAKE INSTALL LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table 1.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

16

Table 1.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h
sundials/sundials fconfig.h
sundials/sundials types.h
sundials/sundials math.h
sundials/sundials nvector.h
sundials/sundials fnvector.h
sundials/sundials matrix.h
sundials/sundials linearsolver.h
sundials/sundials iterative.h
sundials/sundials direct.h
sundials/sundials dense.h
sundials/sundials band.h
sundials/sundials nonlinearsolver.h
sundials/sundials version.h
sundials/sundials mpi types.h
sundials/sundials cuda policies.hpp

nvector serial Libraries libsundials nvecserial.lib
libsundials fnvecserial mod.lib
libsundials fnvecserial.a

Header files nvector/nvector serial.h
Module
files

fnvector serial mod.mod

nvector parallel Libraries libsundials nvecparallel.lib
libsundials fnvecparallel.a
libsundials fnvecparallel mod.lib

Header files nvector/nvector parallel.h
Module
files

fnvector parallel mod.mod

nvector manyvector Libraries libsundials nvecmanyvector.lib
libsundials nvecmanyvector mod.lib

Header files nvector/nvector manyvector.h
Module
files

fnvector manyvector mod.mod

nvector mpimanyvector Libraries libsundials nvecmpimanyvector.lib
libsundials nvecmpimanyvector mod.lib

Header files nvector/nvector mpimanyvector.h
Module
files

fnvector mpimanyvector mod.mod

continued on next page

17

continued from last page

nvector mpiplusx Libraries libsundials nvecmpiplusx.lib
libsundials nvecmpiplusx mod.lib

Header files nvector/nvector mpiplusx.h
Module
files

fnvector mpiplusx mod.mod

nvector openmp Libraries libsundials nvecopenmp.lib
libsundials fnvecopenmp mod.lib
libsundials fnvecopenmp.a

Header files nvector/nvector openmp.h
Module
files

fnvector openmp mod.mod

nvector openmpdev Libraries libsundials nvecopenmpdev.lib
Header files nvector/nvector openmpdev.h

nvector pthreads Libraries libsundials nvecpthreads.lib
libsundials fnvecpthreads mod.lib
libsundials fnvecpthreads.a

Header files nvector/nvector pthreads.h
Module
files

fnvector pthreads mod.mod

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Header files nvector/nvector cuda.h

nvector raja Libraries libsundials nveccudaraja.lib
Header files nvector/nvector raja.h

nvector trilinos Libraries libsundials nvectrilinos.lib
Header files nvector/nvector trilinos.h

nvector/trilinos/SundialsTpetraVectorInterface.hpp
nvector/trilinos/SundialsTpetraVectorKernels.hpp

sunmatrix band Libraries libsundials sunmatrixband.lib
libsundials fsunmatrixband mod.lib
libsundials fsunmatrixband.a

Header files sunmatrix/sunmatrix band.h
Module
files

fsunmatrix band mod.mod

sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense mod.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
Module
files

fsunmatrix dense mod.mod

continued on next page

18

continued from last page

sunmatrix sparse Libraries libsundials sunmatrixsparse.lib
libsundials fsunmatrixsparse mod.lib
libsundials fsunmatrixsparse.a

Header files sunmatrix/sunmatrix sparse.h
Module
files

fsunmatrix sparse mod.mod

sunmatrix slunrloc Libraries libsundials sunmatrixslunrloc.lib
Header files sunmatrix/sunmatrix slunrloc.h

SUNMATRIX CUSPARSE Libraries libsundials sunmatrixcusparse.lib
Header files sunmatrix/sunmatrix cusparse.h

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband mod.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
Module
files

fsunlinsol band mod.mod

sunlinsol dense Libraries libsundials sunlinsoldense.lib
libsundials fsunlinsoldense mod.lib
libsundials fsunlinsoldense.a

Header files sunlinsol/sunlinsol dense.h
Module
files

fsunlinsol dense mod.mod

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu mod.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
Module
files

fsunlinsol klu mod.mod

sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib
libsundials fsunlinsollapackband.a

Header files sunlinsol/sunlinsol lapackband.h
sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib

libsundials fsunlinsollapackdense.a
Header files sunlinsol/sunlinsol lapackdense.h

sunlinsol pcg Libraries libsundials sunlinsolpcg.lib
libsundials fsunlinsolpcg mod.lib
libsundials fsunlinsolpcg.a

Header files sunlinsol/sunlinsol pcg.h
Module
files

fsunlinsol pcg mod.mod

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs mod.lib

continued on next page

19

continued from last page

libsundials fsunlinsolspbcgs.a
Header files sunlinsol/sunlinsol spbcgs.h
Module
files

fsunlinsol spbcgs mod.mod

sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib
libsundials fsunlinsolspfgmr mod.lib
libsundials fsunlinsolspfgmr.a

Header files sunlinsol/sunlinsol spfgmr.h
Module
files

fsunlinsol spfgmr mod.mod

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr mod.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
Module
files

fsunlinsol spgmr mod.mod

sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib
libsundials fsunlinsolsptfqmr mod.lib
libsundials fsunlinsolsptfqmr.a

Header files sunlinsol/sunlinsol sptfqmr.h
Module
files

fsunlinsol sptfqmr mod.mod

sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib
libsundials fsunlinsolsuperlumt.a

Header files sunlinsol/sunlinsol superlumt.h
sunlinsol superludist Libraries libsundials sunlinsolsuperludist.lib

Header files sunlinsol/sunlinsol superludist.h
sunlinsol cusolversp batchqrLibraries libsundials sunlinsolcusolversp.lib

Header files sunlinsol/sunlinsol cusolverp batchqr.h
sunnonlinsol newton Libraries libsundials sunnonlinsolnewton.lib

libsundials fsunnonlinsolnewton mod.lib
libsundials fsunnonlinsolnewton.a

Header files sunnonlinsol/sunnonlinsol newton.h
Module
files

fsunnonlinsol newton mod.mod

sunnonlinsol fixedpoint Libraries libsundials sunnonlinsolfixedpoint.lib
libsundials fsunnonlinsolfixedpoint.a
libsundials fsunnonlinsolfixedpoint mod.lib

Header files sunnonlinsol/sunnonlinsol fixedpoint.h
Module
files

fsunnonlinsol fixedpoint mod.mod

sunnonlinsol petscsnes Libraries libsundials sunnonlinsolpetscsnes.lib
continued on next page

20

continued from last page

Header files sunnonlinsol/sunnonlinsol petscsnes.h
cvode Libraries libsundials cvode.lib

libsundials fcvode.a
libsundials fcvode mod.lib

Header files cvode/cvode.h cvode/cvode impl.h
cvode/cvode direct.h cvode/cvode ls.h
cvode/cvode spils.h cvode/cvode bandpre.h
cvode/cvode bbdpre.h

Module
files

fcvode mod.mod

cvodes Libraries libsundials cvodes.lib
libsundials fcvodes mod.lib

Header files cvodes/cvodes.h cvodes/cvodes impl.h
cvodes/cvodes direct.h cvodes/cvodes ls.h
cvodes/cvodes spils.h cvodes/cvodes bandpre.h
cvodes/cvodes bbdpre.h

Module
files

fcvodes mod.mod

arkode Libraries libsundials arkode.lib
libsundials farkode.a
libsundials farkode mod.lib

Header files arkode/arkode.h arkode/arkode impl.h
arkode/arkode ls.h arkode/arkode bandpre.h
arkode/arkode bbdpre.h

Module
files

farkode mod.mod farkode arkstep mod.mod

farkode erkstep mod.mod farkode mristep mod.mod
ida Libraries libsundials ida.lib

libsundials fida.a
libsundials fida mod.lib

Header files ida/ida.h ida/ida impl.h
ida/ida direct.h ida/ida ls.h
ida/ida spils.h ida/ida bbdpre.h

Module
files

fida mod.mod

idas Libraries libsundials idas.lib
libsundials fidas mod.lib

Header files idas/idas.h idas/idas impl.h
idas/idas direct.h idas/idas ls.h
idas/idas spils.h idas/idas bbdpre.h

Module
files

fidas mod.mod

continued on next page

21

continued from last page

kinsol Libraries libsundials kinsol.lib
libsundials fkinsol.a
libsundials fkinsol mod.lib

Header files kinsol/kinsol.h kinsol/kinsol impl.h
kinsol/kinsol direct.h kinsol/kinsol ls.h
kinsol/kinsol spils.h kinsol/kinsol bbdpre.h

Module
files

fkinsol mod.mod

22

	SUNDIALS Package Installation Procedure
	CMake-based installation
	Building and Running Examples
	Configuring, building, and installing on Windows
	Installed libraries and exported header files

