This is support for black-box optimization with CMA-ES from within ROOT
(http:/lroot.cern.ch/drupal/).

**This is a work in progress, support for ROOT is under continuous improvement, see https://github.com/beniz/libcmaes/issues/13

*%

libcmaes can be used from CERN's ROOT6 as a replacement or addition to Minuit2 optimizer. It is designed to be used from
ROOQOT6 exactly as Minuit2 is used, so code using Minuit2 should be easily run against CMA-ES.

Note: at this early stage, not all features of Minuit2, such as subroutines Contour and Scan, are ported to CMA-ES. This is
awork in progress.

Below are instructions for testing it out.

Beware: at the moment support is alpha, this is NO production code

Building ROOT6 and libcmaes

As for now, the only way to use libcmaes is from ROOT®S, using the following special repository, and compiling it from sources (1):
https://github.com/beniz/root/tree/cmaes4root_master

Proceed with the following steps:

e get and install libcmaes into your home repository (or globally on your system, remove the --prefix option to the configure script

below):

git clone https://github.com/beniz/libcmaes.git
git branch minos

./configure --prefix=/home/yourusername

make

make install

e get ROOT6 from https://github.com/beniz/root/tree/cmaes4root_master, configure & compile it (this will take a while) (2):

git clone https://github.com/beniz/root/tree/cmaes4root_master

cd root

./configure --enable-minuit2 --build=debug --with-cmaes-incdir=/home/yourusername/include/libcmaes --with-cmaes-libdir=/h
make

use make -jx where x is the number of cores on your system in order to minimize the building time.

Running an example with CMA-ES

To run the basic fitting of a Gaussian, originally taken from Minuit2's tutorial files, do:

root
.L tutorials/fit/cmaesGausFit.C++g
cmaesGausFit()

You should see a plot similar to

https://github.com/beniz/libcmaes/issues/13
https://github.com/beniz/root/tree/cmaes4root_master
https://github.com/beniz/root/tree/cmaes4root_master
http://root.cern.ch/drupal/

Chi2 Fit

50—

40

30—

20—

10—

h1_cmaes
Entries 1000
Mean 0.0268
RMS 1.038
Underflow 0
Overflow 0
Integral 1000
%2/ ndf 65.16 / 56
Prob 0.1882
Constant 36.31+0.03
Mean 0.01308 + 0.00225

Sigma 1.034 £ 0.003

10 1

2 3 4 5

To quick test competitiveness against Minuit2:

root

.L tutorials/fit/cmaesFitBench.C

cmaesFitBench()

You should witness a plot similar to

50

40

30

20

Likelihood Fit

h1bis_cmaes
Entries 1000
Mean 0.0268
RMS 1.038
Underflow 0
Overflow 0
Integral 1000
%2/ ndf 74.46 /97
Prob 0.9569

Constant 38.43 + 0.02
Mean 0.0276 + 0.0007
Sigma -1.038 + 0.002

2 A 0 1

2 3 4 5

https://cloud.githubusercontent.com/assets/3530657/2890890/4d96ae1c-d52d-11e3-9610-f24790b23e98.png

Minuit2 fit bench Fumili fit bench

10! 10
Minuit2 CPU=1.39 5 Fumili CPU=1.3 s
Minuit2 10° Fumili
Entries 100000 Entries 100000
Mean 1.767 Mean 1.767
i AMS 0.779 ¥ AMS 0.779
%2/ ndf 213.3/194 N T R 42 I ndf 2133/ 194
PO 65.54 =220 po 65.54 =2.30
pl 63.15 = 4.98 pi 63.16 = 5.00
p2 68.13 = 1.91 102 p2 68.13 2192
P3 405.5 = 2.8 p3 4055 =29
P4 0.03206 = 0.00032 p4 0.03206 = 0.00033
: : p5 100 ‘ | p5 1200
pedeoteodetetetitidiegnne o T] detdge o beckedeodeofooclobebecdee]
0 05 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
cmaes fit bench acmaes fit bench
10* 10*
cmaes CPU=1.3s acmaes CPU=1.29 s
cmaes 10° acmaes
100000 Eniries 100000
1.767 Mean 1.767
0.779 . 0.779
213.3/ 194 e M e 22 ! ndt 213.3 /194
65.54 = 2.20 65.54 =2.20
63.15 =499 63.15 = 4.99
6B.13 =1.91 102 - 68.13 =1.91
405.5 = 2.8 405.5 2.8
0.03206 = 0.00032 0.03206 = 0.00032
; : 1200 : : 1200
pteted v g b T] N | AT I T N o AT W S I O |
[t} 05 1 1.5 2 25 3 0 05 1 1.5 2 25 3

Running a benchmark comparison of CMA-ES and Minuit2

To run the current benchmark and visualize results, take the following steps:

root

.L tutorials/fit/cmaesFullBench.C
run_experiments(10)

python math/cmaes/test/cmaesFullBench.py

This should show a series of histograms comparing results from both optimizers on a selection of problems.

Options to the CMA-ES minimizers within ROOT

https://camo.githubusercontent.com/c11ac80268e452a00f709d043606cfcdad659f7e/687474703a2f2f6a7562616e2e667265652e66722f73747566662f6c6962636d6165732f636d6165735f6d696e756974325f636f6d70657469746976652e706e67

There's built-in control for several hyper-parameters and options of CMA-ES:
e several flavors of the algorithm are available, and can be choosen at creation of the Minimizer object:

TVirtualFitter::SetDefaultFitter(“acmaes'');

or

ROOT::Fit::Fitter fitter;
fitter.Config().SetMinimizer("cmaes'',''acmaes'');

The available algorithms are: cmaes, ipop, bipop, acmaes, aipop, abipop, sepcmaes, sepipop, sepbipop .
'‘acmaes' should be the most appropriate in most cases, and 'sepacmaes' when the number of dimensions nears a thousand.
The options below are not required, but can be used by filling up a MinimizerOptions object beforehand:

const char *fitter = "acmaes"

TVirtualFitter::SetDefaultFitter(fitter);

ROOT: :Math::IOptions &opts = ROOT::Math::MinimizerOptions::Default(fitter);
opts.SetIntValue("lambda",6100);

Options below are not activated by default:

e 'sigma': initial step-size

¢ 'lambda’: number of offsprings at each generation

¢ 'noisy": flag that updates some hyper-parameters if the objective function is noisy

¢ 'restarts': maximum number of restarts, only applies to ipop, bipop, aipop, abipop, sepipop and sepbipop

« 'ftarget": the objective function target that stops optimization when reached, useful when the final value is known, e.g. 0

o 'fplot': output file in libcmaes format for later plotting of eigenvalues and state convergence, mostly for debug purposes

¢ 'Iscaling': automatic linear scaling of parameters with auto-selection of step-size sigma, usually recommended if results are not
satisfactory.

(1) more convenient ways will be provided. (2) we recommend building support for both Minuit2 (i.e. for comparison to CMA-ES) and
debug.

