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Chapter 1

Introduction

1.1 Overview

GICI-LIB is an open-source software package for Global Navigation Satellite System

(GNSS), Inertial Navigation System (INS), and Camera integrated navigation. The fea-

tures of GICI-LIB are:

(a) It is built under the Factor Graph Optimization (FGO) framework. It contains most

of the possible GNSS loose and tight integration factors, INS factors, visual factors,

and motion constraints, together with reliable initialization, measurement sparsifi-

cation, and outlier rejection algorithms. The GNSS formulations are implemented

towards four constellations and full frequencies.

(b) For ease of use, the software is developed under object-oriented programming fea-

tures, and the graph is designed to enable the flexible addition of sensors. By

simple instantiation, one can easily form any kind of multi-sensor fusion algorithm

with considerable robustness.

(c) It supports multiple algorithms, including GNSS Single Point Positioning (SPP),

Real-Time Differential (RTD), Single-Differenced GNSS (SDGNSS), Real-Time Kine-

matic (RTK), Precise Point Positioning (PPP), SPP-based loosely coupled (LC)

and tightly coupled (TC) GNSS/Inertial Navigation System (GINS), SPP-based

Solution/Raw/Raw (SRR) and Raw/Raw/Raw (RRR) GNSS/Visual/Inertial Nav-

igation System (GVINS), RTK-based LC GINS, TC GINS, SSR GVINS, and RRR

GVINS. Moreover, other integration algorithms can be instantiated by users.
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(d) It supports multiple I/O ports, including serial, TCP/IP, NTRIP, V4L2, file, and

ROS topics.

(e) It supports multiple message de/encoders, including RTCM2, RTCM3, Ublox raw,

Septentrio raw, Novatel raw, Tersus raw, NMEA, DCB-file, ATX-file for GNSS,

image-pack, image-v4l2 for image, and IMU-pack for IMU.

(f) It supports multiple stream and multi-algorithm processing. No maximum quantity

is limited.

1.2 License

The GICI-LIB software package is distributed under GPL v3 license. Users are freedom

to modify and distribute the software as they see fit, provided that they adhere to the

terms and conditions set forth in the license. This includes the ability to incorporate or

use GICI-LIB with other software, whether for non-commercial or commercial purposes.

However, any modifications or derivative works must also be distributed under the GPL

v3 license, ensuring that the software remains free and accessible to all users.

1.3 Acknowledgement

Many of the GNSS tools, I/O handlers, and message de/encoders are inherited from

RTKLIB [1]. We extend our sincere gratitude to T. Takasu for generously providing such

excellent software to the GNSS community. The software and its accompanying manual

are valuable resources for those seeking to gain proficiency in GNSS.

The basic FGO management and the visual and IMU factors are partly inherited from

OKVIS [2]. The feature handler is partly inherited from SVO 2.0 [3]. We also extend our

thanks to the authors of these two software programs. Their implementations are very

explicit and deeply influenced our programming style.
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Chapter 2

Instructions

2.1 Installation

GICI supports two build modes: normal build or ROS build.

The normal build enables:

(a) Most of the streamer I/Os, including serial, TCP/IP server, TCP/IP client, Ntrip

server, Ntrip client, V4L2, and file.

(b) All the formator decoder and encoders, including RTCM2, RTCM3, Ublox raw,

Septentrio raw, Tersus raw, NMEA, DCB file, ATX file, V4L2 image pack, GICI

image pack, and GICI IMU pack.

(c) All the estimators, including SPP, SDGNSS, DGNSS, RTK, PPP, SPP-based LC

GINS, TC GINS, SRR GVINS, RRR GVINS, RTK-based LC GINS, TC GINS,

SRR GVINS, RRR GVINS.

(d) Real-time or replay stream flow between the above modules.

The ROS build additionally enables:

(a) ROS stream I/Os that handles ROS topic advertising and subscribing, includ-

ing sensor msgs::Image, sensor msgs::Imu, geometry msgs::PoseStamped, geome-

try msgs::PoseWithCovarianceStamped, nav msgs::Odometry, visualization msgs::Marker,

and nav msgs::Path.

(b) Real-time or replay stream flow between ROS and common GICI modules.
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2.1.1 Requirements

• Ubuntu

We are developing our code on Ubuntu 20.04, and tested on Ubuntu 18.04 and

Ubuntu 22.04. We recommend you to use the same or similar environment if you

do not familiar with cross-compiling.

• Eigen 3.3 or later. REQUIRED.

Eigen is a C++ template library for linear algebra. You can find the releases on

Eigen.

• OpenCV 4.2.0 or later. REQUIRED.

OpenCV is a computer vision library. You can find the releases on Opencv.

• Yaml-cpp 0.6.0 or later. REQUIRED.

Yaml-cpp is a decoder and encoder for YAML formats. We use YAML file to

configure our workflow. You can find the releases on yaml-cpp.

• Glog 0.6.0 or later. REQUIRED.

Glog is a logging control library. You can find the releases on Glog. You should

install Glog together with Gflags. We suggest you install Glog from source code,

rather than apt-get. Because installing from apt-get may make GICI fail to find the

Glog library during compiling.

• Ceres-Solver 2.1.0 or later. REQUIRED.

Ceres-Solver is a nonlinear optimization library. You can find the releases on Ceres-

Solver.

• ROS. OPTIONAL.

ROS is a library for robot applications. We provide a ROS wrapper to enable GICI

handling some ROS messages. If you want to build GICI with ROS, you should

install ROS. You can find the instrunctions on ROS.

2.1.2 Normal Build
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1 cd <gici -root -directory >

2 mkdir build

3 cd build

4 cmake .. -DCMAKE_BUILD_TYPE=Release

5 make -j8

Now you can run GICI via

1 ./ gici_main <gici -config -file >

2.1.3 Build with ROS

1 cd <gici -root -directory >/ ros_wrapper

2 catkin_make -DCMAKE_BUILD_TYPE=Release

3 source ./devel/setup.bash

Now you can run GICI ROS wrapper via

1 rosrun gici_ros gici_ros_main <gici -config -file >

2.2 Configuration

GICI supports multithread streaming, de/encoding, and estimating. One can specify an

unlimited number of nodes with our YAML configuration file. Here we will introduce how

to configure a GICI workflow.

2.2.1 Structure of the Configuration File

GICI uses YAML file (.yaml) as configuration file. All sentences should meet the YAML

format. There are several level of nodes defined in the configuration file. For the first-level,

there are three kinds of nodes: stream, estimate, and logging, see below:

1 stream:

2 # Defines all the streamer nodes and formator nodes.

3 estimate:

4 # Defines all the estimator nodes.

5 logging:

6 # Defines the run -time logging preferences for the software. We use

Google glog for logging control.

5



Figure 2.1 shows the structure of the configuration file.

Figure 2.1: Structure of the configuration file

2.2.2 Stream Node

There are three second-level nodes under the stream node: streamers, formators, and

replay.

Streamers In the streamers node, you can define multiple streamer nodes according to

your requirements:

1 stream:

2 streamers:

3 - streamer:

4 # Streamer tag , should start with "str_".

5 tag: str_ ...

6

7 # Streamer type.

8 type: serial

6



9

10 # Tags of nodes that the data should be sent to.

11 output_tags: [...]

12

13 # Tags of nodes where the data comes from.

14 input_tags: [...]

15

16 # Other options. There are different options for different types.

See streamer common options.

17 ...

18

19 - streamer:

20 # Another streamer node. The tag names should not be duplicated.

21 ...

Streamer Common Options

Table 2.1 is the streamer common options, which will be used in all streamers.

Table 2.1: Streamer common options

Option Description Unit Default

tag Streamer tag, should start with

”str ”.

””

type Streamer type. None

output tags Tags of nodes that the data should

be sent to.

[]

input tags Tags of nodes where the data comes

from.

[]

buffer length The length of buffer that temporaly

stores the binary stream. It should

be determined by the stream load on

this channel.

Bit 32768

loop duration Duration of loop. It should be deter-

mined by your package update rate.

s 0.005

7



The ”type” could be ”serial”, ”tcp-client”, ”tcp-server”, ”file”, ”ntrip-client”, ”ntrip-

server”, ”v4l2”, and ”ros”.

The ”output tags” could be formators, other streamers, and estimators (only when

setting ”type” as ”ros”). The ”input tags” could be formators, an another streamer, and

estimators (only when setting ”type” as ”ros”).

Note that ”tag” and ”type” are necessary, you must specify them in your configuration

file. The other options are optional, you can set them according to your requirements.

Streamer Serial Options

Table 2.2 is the streamer serial options, which will be used in streamers whose type is

serial.

Table 2.2: Streamer serial options

Option Description Unit Default

port Serial port. ””

baudrate Baudrate. 0

bit size Bit size. 8

parity Parity check. Should be n, o, or e. n

stop bit Stop bit. 1

flow control Hardware flow control for 9-pin se-

rial. Should be off or rts.

off

Note that ”port” and ”baudrate” are necessary, you must specify them in your config-

uration file. The other options are optional, you can set them according to your require-

ments.

Streamer TCP/IP Client Options

Table 2.3 is the streamer tcp/ip client options, which will be used in streamers whose

type is tcp client.
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Table 2.3: Streamer tcp/ip client options

Option Description Unit Default

ip Host IP. ””

port Communication port. ””

Note that options in Table 2.3 are necessary, you must specify them in your configu-

ration file.

Streamer TCP/IP Server Options

Table 2.4 is the streamer tcp/ip server options, which will be used in streamers whose

type is tcp server.

Table 2.4: Streamer tcp/ip server options

Option Description Unit Default

port Communication port. ””

Note that ”port” is necessary.

Streamer File Options

Table 2.5 is the streamer file options, which will be used in streamers whose type is file.

9



Table 2.5: Streamer file options

Option Description Unit Default

path File path. ””

swap interval Maximum time duration for storing

data in one file. We will create a new

file if it is exceeded. Set 0 to disable

swap.

h 0

enable time tag Whether to enable time tag for re-

play mode. If enabled, a ”.tag”

file will be created together with

the data file to store data reaching

timestamps. This will make the file

a replay file. In replay mode, if

the file is not a replay file, all the

containings will be instantaneously

loaded. If it is a replay file, it will

be generally loaded according to the

”.tag” file and the replay options.

true

Note that ”path” is necessary, you must specify it in your configuration file.

Streamer Ntrip Client Options

Table 2.6 is the streamer ntrip client options, which will be used in streamers whose type

is ntrip client.
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Table 2.6: Streamer ntrip client options

Option Description Unit Default

ip Host IP. ””

port Communication port. ””

username User name. ””

passward Passward. ””

mountpoint Mountpoint to subscribe. ””

Note that all the options in Table 2.6 are necessary, you must specify them in your

configuration file.

Streamer Ntrip Server Options

Table 2.7 is the streamer ntrip server options, which will be used in streamers whose type

is ntrip server.

Table 2.7: Streamer ntrip server options

Option Description Unit Default

ip Host IP. ””

port Communication port. ””

passward Passward to upload data. ””

mountpoint Mountpoint to publish. ””

Note that all the options in Table 2.7 are necessary, you must specify them in your

configuration file.

11



Streamer V4L2 Options

This function is developed only for the MT9V034 CMOS on our GICI board. For other

CMOS sensors, you should modify the corresponding code to make it fit with your kernel

driver.

Table 2.8 is the streamer v4l2 options, which will be used in streamers whose type is

v4l2.

Table 2.8: Streamer v4l2 options

Option Description Unit Default

dev Device name. ””

width Image width. 0

height Image height. 0

buffer count V4L2 buffer count. 1

Note that only ”buffer count” is optional, you must specify the other options in your

configuration file.

Streamer ROS Options

Table 2.9 is the streamer ros options, which will be used in streamers whose type is ros.

12



Table 2.9: Streamer ros options

Option Description Unit Default

io I/O type, could be input, output,

and log

None

format ROS message format, could be im-

age, imu, gnss raw, pose stamped,

pose with covariance stamped,

marker, path.

””

topic name Name of ROS topic. ””

queue size Queue parameter when instantiating

ROS topic publisher or subscriber.

10

subframe id Subframe ID for publishing ROS

transform.

””

Except for the ”gnss raw”, all the formats are common ROS message types. For our

self-defined message types, you can find the definations on ros wrapper/src/gici/msg, they

are also concluded in subsection 2.4.2. For others, see https://wiki.ros.org/ for details.

Note that ”io”, ”format” and ”topic name” are necessary, you must specify them in

your configuration file. The other options are optional, you can set them according to

your requirements.

Formators In the formators node, you can define multiple formator nodes:

1 stream:

2 formators:

3 - formator:

4 # Formator tag , should start with "fmt_".

5 tag: fmt_ ...

6

7 # I/O type , could be input , output , and log.

8 io: input

9

10 # Formator type.

11 type: gnss -rtcm -3

12

13
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13 # Tags of nodes that the data should be sent to.

14 output_tags: [...]

15

16 # Tags of nodes where the stream comes from.

17 input_tags: [...]

18

19 # Other options. There are different options for different types.

See formator common options.

20 ...

21

22 - formator:

23 # Another formator node. The tag names should not be duplicated.

24 ...

The ”type” could be ”gnss-rtcm-2”, ”gnss-rtcm-3”, ”gnss-raw”, ”image-v4l2”, ”image-

pack”, ”imu-pack”, ”nmea”, ”dcb-file”, and ”atx-file”.

When setting the ”io” option as ”input”, the ”output tags” could be estimators and

other formators, the ”input tags” could be a streamer. When setting the ”io” option as

”output”, the ”output tags” could be a streamer, the ”input tags” should be a estima-

tor. When setting the ”io” options as ”log”, the ”output tags” could be a streamer, the

”input tags” should be an another formator.

Formator Common Options

Table 2.10 is the formator common options, which will be used in all formators.

14



Table 2.10: Formator common options

Option Description Unit Default

tag Formator tag, should start with

”fmt ”.

””

type Formator type. None

io I/O type, could be input, output,

and log.

None

output tags Tags of nodes that the data should

be sent to.

[]

input tags Tags of nodes where the stream

comes from.

[]

Note that ”tag”, ”type”, and ”io” are necessary, you must specify them in your con-

figuration file.

Formator GNSS RTCM2/3 Options

Table 2.11 is the formator gnss rtcm2 and rtcm3 options, which will be used in formators

whose type is gnss-rtcm-2 and gnss-rtcm-3.

Table 2.11: Formator gnss rtcm2/3 options

Option Description Unit Default

start time A coarse (accurate to day) data start

time is need for decoding.

System

Note that ”start time” is optional, you can set it according to your requirements.

Formator GNSS Raw Options

Table 2.12 is the formator gnss raw options, which will be used in formators whose type

is gnss-raw.
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Table 2.12: Formator gnss raw options

Option Description Unit Default

sub type Raw data type. Could be ublox,

septentrio, novatel, or tersus.

””

start time GICI needs a coarse (accurate to

day) data start time.

””

Note that ”sub type” is necessary, while ”start time” is optional.

Formator Image V4L2 and Image Pack Options

Table 2.13 is the formator image v4l2 and image pack options, which will be used in

formators whose type is image-v4l2 and image-pack. These are developed only for GICI

board.

Table 2.13: Formator image v4l2 and image pack options

Option Description Unit Default

width Image width. 0

height Image height. 0

Note that ”width” and ”height” are necessary, you must specify them in your config-

uration file.

Formator NMEA Options

Table 2.14 is the formator nmea options, which will be used in formators whose type is

nmea.

16



Table 2.14: Formator nmea options

Option Description Unit Default

use gga Whether to use GxGGA message. true

use rmc Whether to use GxRMC message. true

use esa Whether to use GxESA message. false

use esd Whether to use GxESD message. false

talker id NMEA talker ID. ”GN”

The GxESA is our self-defined sentence, which stands for Extended Speed and Attitude

(ESA). The format is as follows:

1 $GxESA ,tod ,Ve,Vn,Vu,Ar,Ap,Ay*checksum

where tod is the Time of Day. Ve, Vn, Vu is the velocity in East, North, and Up respec-

tively. Ar, Ap, Ay is the attitude in roll, pitch, and yaw respectively.

The GxESD is also our self-defined sentence, which stands for Extended STD (ESD).

The format is as follows:

1 $GxESD ,tod ,STD_Pe ,STD_Pn ,STD_Pu ,STD_Ve ,STD_Vn ,STD_Vu ,STD_Ar ,STD_Ap ,
STD_Py*checksum

where STD Pe, STD Pn, STD Pu are position STD in east, north, and up. STD Ve,

STD Vn, STD Vu are the velocity STD in east, north, and up. STD Ar, STD Ap,

STD Py are the attitude STD in roll, pitch, and yaw.

Note that all the options in Table 2.14 are optional, you can set them according to

your requirements.

Other Formator Types Options

Other formator types do not have specific options.

Replay The replay node defines the replay functions. One can firstly store streams into

replay files with the log mode, and then replay the files by replacing the input streams

with replay files and setting the replay options. The replay options are defined as follows:
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1 stream:

2 replay:

3 # Whether to enable replay mode.

4 enable: false

5

6 # Replay speed.

7 speed: 1.0

8

9 # Replay start offset in seconds.

10 start_offset: 5.0

If set ”enable” as true, all the streams except for file streams are disabled, and the

files will be replayed according to its tags and the following options.

2.2.3 Estimate Node

You can define the estimators in the second-level node:

1 estimate:

2 - estimator:

3 # Estimator tag , should start with "est_".

4 tag: est_ ...

5

6 # Estimator type.

7 type: spp

8

9 # Tags of nodes that the solution should be sent to.

10 output_tags: [...]

11

12 # Tags of nodes where the data comes from.

13 input_tags: [...]

14

15 # Roles of input tags. xxx is input tag name.

16 xxx_roles: [...]

17 ...

18

19 # Other options. There are different options for different types.

See estimator common options.

20 ...

21

22 - estimator:

23 # Another estimator node. The tag names should not be duplicated.
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The ”type” could be ”spp”, ”sdgnss”, ”dgnss”, ”rtk”, ”ppp”, ”gnss imu lc”, ”spp imu tc”,

”rtk imu tc”, ”gnss imu camera srr”, ”spp imu camera rrr”, and ”rtk imu camera rrr”.

The ”output tags” could be formators, other estimators, and ROS streamers. The

”input tags” could be formators, other estimators, and ROS streamers.

The ”input tag roles” could be ”rover”, ”reference”, ”ephemeris”, ”ssr ephemeris”,

”code bias”, ”phase bias”, ”heading”, and ”phase center” for GNSS data, ”major” and

”minor” for IMU data, ”mono”, ”stereo major”, ”stereo minor”, and ”array” for image

data.

Note: Defining the ”output tags” at the source side equivalents with defining the

”input tags” at the destination side. So is okay to just define the tag connections at one

side.

Estimator Common Options

Table 2.15 is the estimator common options, which will be used in all estimators.
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Table 2.15: Estimator common options

Option Description Unit Default

tag Estimator tag, should start with

”est ”.

””

type Estimator type. None

output tags Tags of nodes that the solution

should be sent to.

[]

input tags Tags of nodes where the data comes

from.

[]

xxx roles Role of the input tags, the xxx

should be replaced by the tag of in-

put tags.

[]

output align tag Align the output rate to the

data rate of an input formator or

streamer.

””

output downsample rate Downsample rate of output solu-

tions. Set as 1 if you do not want

to downsample this data stream.

[1,. . . ]

compute covariance Whether to compute covariance. true

enable input align Whether to align input measure-

ment timestamps. If enabled, the in-

put measurements will be reordered

in chronological increments within a

short buffer. This will slightly in-

crease the precision and efficiency of

estimation but will cause latency.

false

input align latency Latency tolerant if the en-

able input align is enabled.

0.0

enable backend

data sparsify

Whether to automatically sparsify

measurements if backend pending is

detected.

false
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Note that ”tag”, ”type”, and ”output align tag” are necessary, ”xxx roles” is necessary

if the optional ”input tags” is specified. The other options are optional, you can set them

according to your requirements.

Estimator Base Options

Table 2.16 is the estimator base options, which will be used in all estimators.

Table 2.16: Estimator base options

Option Description Unit Default

max iteration Max iteration number for ceres opti-

mization

10

num threads Number of threads used for ceres op-

timization

2

max solver time Maximum time in second for which

the optimizer should run for

s 0.05

solver type Ceres solver type DENSE

SCHUR

trust region strategy type Ceres trust region strategy type DOGLEG

verbose output Verbose optimization output false

force initial global position Forcely set initial position in global

frame

false

initial global position If force initial global position =

ture, this parameter sets the initial

position in LLA coordinate

deg 03×1

compute covariance If we should compute covariance true

log intermediate data Log estimator intermediate informa-

tion

false

log intermediate

data directory

Log estiamtor intermediate informa-

tion to this directory if enabled

” ”

21



GNSS Common Options

Table 2.17 is the GNSS estimator common options, which will be used in GNSS-related

estimators.

Table 2.17: GNSS Common Options

Option Description Unit Default

system exclude Usage of satellite systems all

systems

satellite exclude Usage of specific satellite all

satellites

code exclude Usage of code types all code

types

min elevation Minimum elevation angle deg 12

min SNR Minimum SNR for frequencies 1575.42

MHz (L1) and 1176.45 MHz (L5), SNR

masks for other frequencies will be in-

terpolated by a linear model

(25, 20)

max gdop Maximum GDOP as valid solution 20

mw slip thres Threshold for Melbourne-Wubbena

(MW) cycle-slip detection

m 0.5

gf slip thres Threshold for Geometry-Free (GF)

cycle-slip detection

m 0.05

gf sd slip thres Threshold for single differenced GF

cycle-slip detection

m 0.05

receiver pco Receiver Phaes-Center-Offset (PCO) m 03×1

GNSS Error Parameters

Table 2.18 holds GNSS error factors, which is saved for GNSS base estimator and will be

used in GNSS-ralated estimators.
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Table 2.18: GNSS Error Parameters

Option Description Unit Default

code to phase ratio code noise = phase noise × ra-

tio

100

phase error factor Error factor a/b/c according

to RTKLIB

[0.003, 0.003, 0.0]

system error ratio System error ratio G:1; R:5

C:2; E:1.5

ionosphere broadcast

factor

Ionosphere model error factor 0.5

ionosphere dual

frequency

Dual-frequency ionosphere er-

ror

m 0.2

ionosphere augment Augmentation ionosphere er-

ror

m 0.03

troposphere model factor Troposphere model error fac-

tor

m 0.2

troposphere augment ugmentation troposphere error m 0.01

ephemeris broadcast Broadcast ephemeris error m 3

ephemeris precise Precise ephemeris error m 0.1

initial troposphere Initial troposphere error m 0.1

initial ionosphere Initial ionosphere error m 10

initial ambiguity Initial ambiguity error m 10

relative position Relative position error in ENU

used in GNSS-only positioning

m/sqrt

(Hz)

[100, 100, 0]

Continued on next page
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Table 2.18 continued from previous page

Option Description Unit Default

relative velocity Relative velocity error in ENU

used in GNSS-only position-

ing, if we estimate receiver ve-

locity, specify this parameter,

or, specify the above parame-

ter.

m/sqrt

(Hz)

[10, 10, 10]

relative troposphere relative troposphere delay er-

ror

m/sqrt

(Hz)

3× 10−4

relative ionosphere Relative ionosphere delay error m/sqrt

(Hz)

3× 10−2

relative ambiguity Relative ambiguity error m/sqrt

(Hz)

1× 10−4

relative frequency Relative receiver frequency er-

ror

m/sqrt

(Hz)

1× 10−2

relative gps ifcb Relative GPS Inter-Frequency

Clock Bias (IFCB) error

m/sqrt

(Hz)

5× 10−4

residual gps ifcb Residual amplitude for

GPS L5 (influenced by un-

calibrated IFCB)

m/sqrt

(Hz)

0.02

GNSS Estimator Base Options

Table 2.19 is the GNSS base estimator options, which will be used in all GNSS-related

estimators.
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Table 2.19: GNSS Estimator Base Options

Option Description Unit Default

GnssCommonOptions See Table 2.17

GnssErrorParameter See Table 2.18

use outlier rejection Use Fault Detection and Exclusion

(FDE)

true

reject one outlier once Reject outlier at a time or reject all false

max pesudorange error Maximum pseudorange error to ex-

clude

m 4.0

max phaserange error Maximum phaserange error to ex-

clude

m 0.03

max doppler error Maximum doppler error to exclude m/s 0.5

good observation

min num satellites

Minimum number of satellite to be

considered as good observation en-

vironment

10

good observation max gdop Maximum GDOP value to be con-

sidered as good observation environ-

ment

2.0

good observation max

reject ratio

Maximim outlier rejection ratio to

be considered as good observation

environment

0.1

reset ambiguity min

num continuous unfix

Minimum number of continuous un-

fix under good observation to reset

ambiguities

10

diverge max reject ratio Maximum outlier rejection ratio to

be considered as diverging

0.5

diverge min num

continuous reject

Minimum number of continuous

large amount rejection to be consid-

ered as divergence

10
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Ambiguity Resolution Options

Table 2.20 is the ambiguity resolution options.

Table 2.20: Ambiguity Resolution Options

Option Description Unit Default

system exclude Usage of satellite systems. Currently

we do not support GLONASS ambigu-

ity resolution

[R]

satellite exclude Usage of specific satellite. In default,

we use all satellites

phase exclude Usage of phase types. In default, we

use all phase types

min elevation Minimum elevation angle deg 15

min percentage

fixation nl

Percentage of narrow lane ambiguity

fixation to consider as fixed solution

0.9

min percentage

fixation wl

Percentage of wide lane ambiguity fix-

ation to consider as succeed

0.9

min percentage

fixation uwl

Percentage of ultra wide lane ambiguity

fixation to consider as succeed

1

min num satellite

pairs fixation

Minimum number of satellite pairs for

valid ambiguity resolution

6

ratio Ambiguity fixation ratio for LAMBDA 3

DGNSS (RTD) Estimator Options

Table 2.21 is the DGNSS estimator options.
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Table 2.21: DGNSS Estimator Options

Option Description Unit Default

estimate velocity Estimate velocity or not true

max age Maximum age to apply difference 20

SDGNSS Estimator Options

Table 2.22 is the SDGNSS estimator options.

Table 2.22: SDGNSS Estimator Options

Option Description Unit Default

estimate velocity Estimate velocity or not true

max age Maximum age to apply difference 20

SPP Estimator Options

Table 2.23 is the single point positioning estimator options.

Table 2.23: SPP Estimator Options

Option Description Unit Default

estimate velocity Estimate velocity or not true

PPP Estimator Options

Table 2.24 is the PPP estimator options.
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Table 2.24: PPP Estimator Options

Option Description Unit Default

max window length Max window length 10

use ambiguity resolution Use ambiguity resolution false

estimate velocity Estimate velocity or not true

RTK Estimator Options

Table 2.25 is the RTK estimator options.

Table 2.25: RTK Estimator Options

Option Description Unit Default

max window length Max window length 3

use ambiguity resolution Use ambiguity resolution true

estimate velocity Estimate velocity or not true

max age Maximum age to apply difference 20

IMU Parameters

Table 2.26 is the IMU parameters saved for imu base estimator, which will be used in

INS-related estimators.
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Table 2.26: IMU Parameters

Option Description Unit Default

a max Accelerometer saturation m/s2 150

g max Gyroscope saturation rad/s 7.8

sigma g c Gyroscope noise density rad/s ×
1/sqrt(Hz)

1× 10−4

sigma bg Initial gyroscope bias uncertainty rad/s ×
1/sqrt(Hz)

0.01

sigma a c Accelerometer noise density m/s2 ×
1/sqrt(Hz)

2× 10−3

sigma ba Initial accelerometer bias uncer-

tainty

m/s2 ×
1/sqrt(Hz)

0.1

sigma gw c Gyroscope drift noise density rad/s2 ×
1/sqrt(Hz)

2.1× 10−5

sigma aw c Accelerometer drift noise density m/s3 ×
1/sqrt(Hz)

8.4× 10−4

g Earth acceleration m/s2 9.8

rate IMU rate Hz 400

delay imu cam Camera-IMU delay: de-

lay imu cam = cam timestamp -

imu timestamp

s 0.0

INS Estimator Options

Table 2.27 is the INS estimator options, which will be used in INS-related estimators.
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Table 2.27: INS Estimator Options

Option Description Unit Default

ImuParameters See Table 2.26

body to imu rotation IMU to car rotation deg 03×1

body to imu rotation std STD of IMU to body rotation deg 3.0

car motion If car motion false

car motion min velocity Minimum velocity to apply car mo-

tion constraints

m/s 3.0

car motion max

anguler velocity

Maximum angular rate to apply car

motion constraints

deg/s 5.0

Visual Estimator Base Options

Table 2.28 is the visual estimator base options, which will be used in visual-related esti-

mators.

Table 2.28: Visual Estimator Base Options

Option Description Unit Default

feature error std Feature error STD pixel 2

landmark outlier

rejection threshold

Landmark outliter rejection thresh-

old (pixel)

2

max frequency Maximum frequency of visual back-

end processing

Hz 10

diverge max reject ratio Maximum outlier rejection ratio to

be considered as diverging

0.5

diverge min num

continuous reject

Minimum number of continuous

large amount rejection to be consid-

ered as divergence

10
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GNSS/INS Loosely Coupled (LC) Estimator Options

Table 2.29 is the GNSS/INS loosely-coupled estimator options

Table 2.29: GNSS/INS Loosely Coupled (LC) Options

Option Description Unit Default

max window length Max window length 10

GNSS/INS Initializer Options

Table 2.30 is the GNSS/IMU initializer, which will be performed when initialize estimator

that contains GNSS and IMU.
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Table 2.30: GNSS/INS Initializer Options

Option Description Unit Default

max iteration Max iteration number for ceres opti-

mization

30

num threads Number of threads used for ceres op-

timization

4

max solver time Maximum time in second for which

the optimizer should run for

0.5

time window length

slow motion

We should keep stady during this pe-

riod to initialize roll, pitch and an-

gular rate bias

0.1

time window length

dynamic motion

We should do a dynamic motion af-

ter the slow motion initilization has

finished, the time window will be

used for bundle adjustment.

0.5

min acceleration At least one state should have hor-

izontal acceleration larger than this

in the dynamic motion window, we

need a relatively large acceleration

to ensure the observability of yaw at-

titude

0.5

gnss extrinsics Relative position from IMU to

GNSS in IMU frame

03×1

gnss extrinsics initial std GNSS extrinsics initial variance 03×1

SPP/INS Tightly Coupled (TC) Estimator Options

Table 2.31 is the SPP/INS Tightly Coupled (TC) Estimator options.
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Table 2.31: SPP/INS Tightly Coupled Estimator Options

Option Description Unit Default

max window length Max window length 10

RTK/INS Tightly Coupled (TC) Estimator Options

Table 2.32 is the RTK/INS Tightly Coupled (TC) estimator options.

Table 2.32: RTK/INS Tightly Coupled (TC) Estimator Options

Option Description Unit Default

max window length Max window length 10

Feature Detector Options

Table 2.33 is the feature detector options inherited from [3].
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Table 2.33: Feature Detector Options

Option Description Unit Default

cell size Maximum one feature per bucked with

cell size width and height

30

max level Extract features on pyramid 2

min level minimum pyramid level at which fea-

tures should be selected

0

border no feature should be within border. 8

detector type Choose between FAST and

FAST GRAD, FAST GRAD will

use Edgelets.

kFast

threshold secondary Secondary detector threshold. Used if

the detector uses two different detec-

tors. E.g. in the case of FAST GRAD,

it is the gradient detector threshold.

100

sampling level Level where features are initialized.

Only for detectors supporting specific

feature levels like the AllPixelDetector.

0

sec grid fineness fineness level of the secondary grid

(used for extra shi tomasi features when

loop closing is enabled)

1

threshold shitomasi Corner Strength Thrshold for shitomasi

features (used only when loop closing is

enabled)

100

Feature Tracker Options

Table 2.34 is the feature tracker options also inherited from [3].
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Table 2.34: Feature Tracker Options

Option Description Unit Default

window size Size of the search window at each

pyramid level

[21, 21]

max level 0-based maximal pyramid level num-

ber; if set to 0, pyramids are not

used (single level), if set to 1, two

levels are used, and so on

3

max count The maximum number of iterations

or elements to compute

30

epsilon The desired accuracy or change in

parameters at which the iterative al-

gorithm stops

0.01

use relative rotation Use relative rotation to set initial

pixel of LK optical flow iteration

when it is avaible

true

ransac threshold Threshold of ransac to reject track-

ing outliers

pixel 1

ransac confidence specifies a desirable level of con-

fidence (probability) that the esti-

mated matrix is correct

0.99

Visual Initialization Options

Table 2.35 is the visual initialization options, which could be used for initializing visual-

related estimators.
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Table 2.35: Visual Initialization Options

Option Description Unit Default

init type kHomography for estimating a plane from the first two

views, kFundamental for estimating fundamental ma-

trix from the first two views

kFunda-

mental

init min

disparity

Minimum disparity (length of feature tracks) required

to select the second frame. After that we triangulate

the first pointcloud. For easy VisualInitialization you

want to make this small (minimum 20px) but actually

it is much better to have more disparity to ensure the

initial pointcloud is good.

50

init disparity

pivot ratio

When checking whether the disparity of the tracked

features are large enough, we check that a certain per-

centage of tracked features have disparities large than

init min disparity. The default percentage is 0.5, which

means the median is checked. For example, if this pa-

rameter is set to 0.25, it means we go for realtive pose

estimation only when at least 25% of the tracked fea-

tures have disparities large than init min disparity

0.5

init min features If less features than init min features can be extracted

at the first frame, the first frame is not accepted and

we check the next frame.

30

init min inliers At the end of VisualInitialization, we triangulate the

first pointcloud and check the quality of the trian-

gulation by evaluating the reprojection errors. All

points that have more reprojection error than re-

proj error thresh are considered outliers. Only return

SUCCESS if we have more inliers than init min inliers.

20

init map scale Initial map average depth only used for homography

init

100

reproj error

thresh

Reprojection threshold pixel 2
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Feature Handler Options

Table 2.36 is the feature detector options used for feature-related applications.

Table 2.36: Feature Handler Options

Option Description Unit Default

max n kfs Max number of keyframes to keep 10

max features per frame Max features per frame 120

kfselect min numkfs If we have less than this amount of fea-

tures we always select a new keyframe.

60

kfselect min disparity Minimum disparity to select a new

keyframe

10

kfselect min dist metric Minimum distance in meters before a

new keyframe is selected.

1.5

kfselect min angle Minimum angle in degrees to closest

KF

10

kfselect min dt Minimum time duration in seconds to

forcely select a new keyframe. This is

used to control the long duration IMU

drift under a slow or static motion.

2

max pyramid level Image max pyramid level 3

min disparity

init landmark

Minimum disparity to triangulate a

landmark

5

detector Feature detector options in Table 2.33

tracker Feature tracker options in Table 2.34

initialization Initialization options in Table 2.35

cameras Camera model, can be ATAN, Pinhole

or Ocam (see vikit)
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GNSS/INS/Camera SRR Estimator Options

Table 2.37 is the GNSS/INS/Camera SRR estimator options.

Table 2.37: GNSS/INS/Camera SRR Estimator Options

Option Description Unit Default

max keyframes Frame state window length. We

only keep GNSS measurements near

to keyframes (one-to-one) and throw

the others away after one optimiza-

tion, because the GNSS measure-

ment errors, especially for the multi-

path, are highly correlated between

epochs when we have a slow or zero

motion

5

max gnss window

length minor

GNSS state window length before vi-

sual has been initialized

10

min yaw std

init visual

Maximum yaw STD to start visual

initialization

deg 0.5

SPP/INS/Camera RRR Estimator Options

Table 2.38 is the SPP/INS/Camera RRR estimator options.

Table 2.38: SPP/INS/Camera RRR Estimator Options

Option Description Unit Default

max keyframes Frame state window length 5

max gnss window

length minor

GNSS state window length before vi-

sual has been initialized

3

min yaw std

init visual

Maximum yaw STD to start visual

initialization

deg 0.5
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RTK/INS/Camera RRR Estimator Options

Table 2.39 is the RTK/INS/Camera RRR estimator options.

Table 2.39: RTK/INS/Camera RRR Estimator Options

Option Description Unit Default

max keyframes Frame state window length 5

max gnss window

length minor

GNSS state window length before vi-

sual has been initialized

3

min yaw std

init visual

Maximum yaw STD to start visual

initialization

deg 0.5

2.2.4 Logging Node

The definitions in the logging node is very simple. You should just specify the following

4 options:

1 logging:

2 # Enable of disable logging , should be true or false.

3 enable: true

4

5 # Minimum logging level.

6 min_log_level: 0

7

8 # Whether we should print the logging streams to stderr.

9 log_to_stderr: true

10

11 # Directory you want to generate the log files.

12 file_directory: ...

The ”min log level” should be 0 - 3. Where 0 - 3 stands for INFO, WARNING,

ERROR, FATAL, respectively.

if set ”log to stderr” to false, we will create log files in ”file directory”. If set as true,

the logs will be printed to stderr, and the files will not be created.
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2.3 Typical Usage Scenarios

In GICI, there are three typical usage scenarios: ”Stream Transfer and Format Con-

version”, ”Real-Time Estimation” and ”Offline Pseudo-Real-Time Estimation”. Stream

threads are utilized in the first scenarios, so only the ”stream node” should be set in the

configuration file, which is described in subsection 2.2.2. As the name implies, the esti-

mator stream will be additionally used in the other two scenarios, so the ”estimate node”

should be additionally set, which is described in subsection 2.2.3. If you want to apply

them to your project, you can include the corresponding node in your configuration file.

In addition, we also provide some configuration file examples and corresponding datasets

for everyone to verify and simulate.

2.3.1 Stream Transfer and Format Conversion

There are five sub-scenarios about stream transfer and format conversion in GICI.

Data Storage

You can transfer the stream from ”serial”, ”TCP client”, ”Ntrip client”, ”V4L2” into

”file” in real time , as shown in Figure 2.2. The words in the box of the figure correspond

exactly to the ”type“ in the stream node. Please refer to Table 2.1 through Table 2.6 or

“option/data storgae.yaml” for guidance on how to set them in configuration file.

Figure 2.2: The real-time data storage. The ”serial”, ”tcp-client”, ”ntrip-client”, ”V4L2”

and ”file” are the types of the streamer node.
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This feature is commonly used for dataset collection. The stored files can be used in

subsection 2.3.3 for algorithm development.

Data Broadcast

You can broadcast the GNSS data stream from ”serial”, ”TCP client” and ”Ntrip client”

in real time to ”serial”, ”TCP server” and ”Ntrip server”, as shown in Figure 2.3. Please

refer to Table 2.1 through Table 2.7 pr ”option/data broadcast.yaml” for guidance on

how to set them in configuration file.

Figure 2.3: The real-time broadcast of stream

This feature is commonly used for broadcasting GNSS correction messages to users,

such as the Observation State Representation (OSR) message used for RTK, and the State

Space Representation (SSR) message used for PPP.

Format Conversion and Storage

If you want to convert the data format before saving them to files, you can use the format

conversion and storage feature. Figure 2.4 shows the data streaming process from real-time

data input to decoding and encoding, and finally storage to file in real-time. The ”Forma-

tor“ decodes and converts the format of the information from multiple inputs, and then

outputs it to a file in real-time. For example, you can convert various formats of GNSS,

and for more conversion between formats, please refer to “src/stream/formator.cpp”. The

words in the box of the figure correspond exactly to the ”type“ in the stream node. Please

refer to Table 2.1 through Table 2.14 or ”option/format conversion and storage.yaml” for

guidance on how to set them in configuration file.
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Figure 2.4: Format conversion and storage

Format Conversion and Broadcast

If you want to convert the data format before broadcasting them to other streams, you can

use the format conversion and broadcast feature. Figure 2.5 shows the GNSS data stream-

ing process from real-time data input to decoding and encoding, and finally broadcast to

serial or ICP/Ntrip in real-time. Please refer to ”option/format conversion and broadcast

.yaml” for guidance on how to set them in configuration file.

Figure 2.5: Format conversion and broadcast

Publish Data to ROS Topics

If you build GICI in ROS wrapper, you can publish the data from interface to ros top-

ics. Figure 2.6 shows the data streaming process from real-time data input to decod-

ing, and finally publish to ROS topics in real-time. Please refer to Table 2.9 for guid-
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ance on how to set ROS streamer node in configuration file. It’s worth noting that if

ROS is chosen as the input or output, there is no need for a corresponding ”forma-

tor” to perform decoding or encoding. Please refer to Table 2.10 through Table 2.14 or

”ros wrapper/src/gici/option/piblish data to ros topics.yaml” for guidance on how to set

them in configuration file.

Figure 2.6: Publish data to ROS topics. The ”Formotor-Type” in figure could be ”gnss-

rtcm-2”, ”gnss-rtcm-3”, ”gnss-raw”, ”image-v4l2”, ”image-pack” and ”imu-pack”, which

are correspond to the ”type” of ”formator” in configuration file.

2.3.2 Real-Time Estimation

One of the most important features of GICI is to apply multi-sensor estimation, so real-

time processing and estimation is the main scenario of GICI. As shown in the Figure 2.7,

the data input from various interfaces of the “streamer” is first decoded by ”formator”

and then fed into the ”estimator” in real-time. The output of the estimator can be 1)

encoded and output in real-time, 2) published through ROS topics for real-time output,

and 3) output to other ”estimator”, ”formator” or ”streamer(ros)”.
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Figure 2.7: The structure of real-time estimation. The ”...” could be formator,

streamer(ros) or other estimator.

The ”Formotor-Type” in figure could be ”gnss-rtcm-2”, ”gnss-rtcm-3”, ”gnss-raw”,

”image-v4l2”, ”image-pack”, ”imu-pack”, ”nmea”, ”dcb-file”, and ”atx-file”. Please refer

to Table 2.1 through Table 2.14 for guidance on how to set them in configuration file.

The ”Estimator-Type” in figure could be ”spp”, ”sdgnss”, ”dgnss”, ”rtk”, ”ppp”,

”gnss imu lc”, ”spp imu tc”, ”rtk imu tc”, ”gnss imu camera srr”, ”spp imu camera rrr”,

and ”rtk imu camera rrr”. For example, the first estimator type can be ”rtk”, and the

second estimator type whose the first outputs to can be ”gnss imu camera srr”. Please

refer to subsection 2.2.3 or ”option/real time estimation.yaml” for guidance on how to

set them in configuration file.

In the example configuration file ”option/real time estimation.yaml”, we demonstrated

how to configure each node of the ”gnss imu camera srr” type for real-time estimation.

The data input from each interface is decoded and then sent to the RTK estimator and

the GNSS/IMU/Camera SRR estimator. The estimated pose results are then encoded
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and output in NMEA format. Of course, you can also add other estimators or outputs

(such as outputting to ROS topics), which can refer to the related configuration file of

pseudo real-time estimation in subsection 2.3.3.

In addition, you can perform real-time processing and estimation by accessing ROS

topics, as is shown in Figure 2.8. In the example configuration file ”ros wrapper/src/gici

/option/ros real time estimation xxx.yaml”, we subscribed to real-time ROS topics as

inputs and published ROS topics about the output pose and image containing feature

points.

Figure 2.8: The structure of real-time estimation through ROS. The ”...” could be for-

mator, streamer(ros) or other estimator.

2.3.3 Offline Pseudo-Real-Time Estimation

GICI supports offline pseudo-real-time processing, which enables algorithm performance

testing and scientific research by replaying previously stored files or rosbags. Compared

with pure post-processing, pseudo-real-time processing can maximize the restoration of

real-time running conditions, including sensor bus delay, thread synchronization, and

thread blocking.
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You can perform pseudo-real-time processing by replaying previously stored files or

rosbags, as shown in Figure 2.9 and Figure 2.10. The encoded file data or ROS topics can

be sent to estimator for corresponding estimation, and afterwards can be sent to different

”streamer”, ”formator” or ”estimator” nodes. For the convenience of readers in handling

the provided datasets or datasets recorded by themselves, we provide multiple sample con-

figuration files named ”option/pseudo real time estimation xxx.yaml” for various types of

pseudo-real-time estimation. If you build GICI in ROS wrapper, you can also use ROS

topics as the input and output of pseudo-real-time estimation, see ”ros wrapper/src/gici

/option/ros real time estimation xxx.yaml”.

You can also use the visualization tool RVIZ in ROS to subscribe to related topics

and observe the results of GICI estimation. We also provide an RVIZ configuration

file ”ros wrapper/src/gici/rviz/gici gic.rviz” that is suitable for observing the estimation

results of our datasets. It is worth noting that we only provide the “xxx.bin“ file datasets

that we recorded. If you want to use our datasets as an input in rosbags, we suggest that

you use the ”tools/ros/gici files to rosbag” tool to convert files to rosbags before data

input.

Figure 2.9: The structure of pseudo-real-time estimation

Figure 2.10: The structure of pseudo-real-time estimation through ROS

In addition to the above usage scenarios, you can also set configuration files refer to

the source code and your own needs.

46



2.4 Hardware Configuration

In this section, we will introduce how to collect valid data that can be used by GICI. It

should be noted that developing a well-synchronized GNSS/INS/Camera system is not

that easy. We strongly suppose you use our dataset if you do not have sufficient hardware

experiments.

We briefly introduce the principles here. subsection 2.4.1 introduces how to configure

a sensor to output valid data. Then subsection 2.4.2 introduces how to use ROS topics

as sensor data source. Finally, subsection 2.4.3 illustrates how to apply hardware time

synchronization between sensors, which is essential for multi-sensor fusion algorithms

achieving prospective performance.

2.4.1 Stream Input and Data Format

We introduce three types of input data: GNSS, IMU, and camera.

GNSS Data

Commonly, GNSS data is transferred via a serial port from the receiver (either integrated

or chipset). Thereby, you should configure an input serial streamer to capture the stream

1 - streamer:

2 tag: str_gnss_rov

3 output_tags: [fmt_gnss_rov]

4 type: serial

5 port: ttyUSB0

6 baudrate: 115200

The formator node is defined as

1 - formator:

2 io: input

3 tag: fmt_gnss_rov

4 type: gnss -raw

5 sub_type: tersus

The ”type” could be either gnss-raw, gnss-rtcm-2, or gnss-rtcm-3. After defining the

above nodes, the decoded data can be fed to any nodes you want.

Since we need the GNSS data format to decode the messages, you should configure
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your GNSS receiver to output data in the corresponding formats that you specified in the

formator node.

For the gnss-raw format, we currently support ublox, septentrio, novatel, and tersus

formats, as described in Table 2.12. You should find a receiver with the corresponding

brand and configure it by serial via string commands. We inherit the decoders from

RTKLIB [1], you can find the commands in the ”data/cmd” folder of their source code

folder https://github.com/tomojitakasu/RTKLIB/tree/rtklib_2.4.3.

If you are not using the support brands of receivers, you can first try to find out if they

support the above raw message types. If your receiver do not support the messages, you

can use the gnss-rtcm-2 or gnss-rtcm-3 messages. Since the RTCM messages are designed

for broadcasting the differential measurements, the raw measurement output capacity

may not be fully supported by your receiver. In this case, the minimum requirement is

to make sure that the pseudorange and carrier phase are outputted. If possible, output

the doppler measurement together.

No matter which message type you are using, a high-frequency output is preferred.

Commonly, the output frequency could be 1 Hz ∼ 100 Hz, try to output frequency as

higher as possible within the acceptable consumption of the computational load.

IMU Data

Commonly, IMU data is transferred via SPI, IIC, or serial from the IMU sensor. In GICI,

we do not support SPI or IIC, because the data acquisition job is commonly done by an

MCU, and then transferred to a Linux CPU via an asynchronous bus, such as openAMP

or serial. An example IMU stream handle node is

1 - streamer:

2 tag: str_imu

3 output_tags: [fmt_imu]

4 type: serial

5 port: ttyUSB0

6 baudrate: 115200

The formator node is defined as

1 - formator:

2 io: input

3 tag: fmt_imu

4 type: imu -pack
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Table 2.40: Message format of imu-pack

Preamble Length Data Parity

0xFECB 8 bit Length × 8 bit 8 bit

Table 2.41: Data format of imu-pack

ID Field Description Type Bits Unit

1 sec Second part of timestamp. uint 32 s

2 nsec Nano-second part of timestamp. uint 32 ns

3 acc-x Accelaration in the x-axis. int 20 220

9.8×24
m/s2

4 acc-y Accelaration in the y-axis. int 20 220

9.8×24
m/s2

5 acc-z Accelaration in the z-axis. int 20 220

9.8×24
m/s2

6 gyro-x Angular velocity in the x-axis. int 20 220×180
4000×π

rad/s

7 gyro-y Angular velocity in the y-axis. int 20 220×180
4000×π

rad/s

8 gyro-z Angular velocity in the z-axis. int 20 220×180
4000×π

rad/s
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We only support imu-pack for IMU messages. The imu-pack format is

We provide the decoder and encoder for the imu-pack type, see format imu.c. You

can also instantiate your own decoder in formator.cpp if you want to use another message

type.

Camera Data

Commonly, camera data is transferred via a camera bus, such as MIPI and DCMI. Linux

users can read data from these buses via a V4L2 driver if the corresponding kernel driver

is instantiated.

Although these interfaces have been largely unified by V4L2, the operations still vary

between sensors. Hence, if you want to use our V4L2 interface, you should modify the

corresponding codes to make it fit with your sensor. An example configuration for V4L2

streamer is

1 - streamer:

2 tag: str_camera

3 output_tags: [fmt_camera]

4 type: v4l2

5 dev: video0

6 height: 480

7 width: 752

8 buffer_count: 361472 # 752 * 480 + 512

The formator node is defined as

1 - formator:

2 io: input

3 tag: fmt_camera

4 type: image -v4l2

5 height: 480

6 width: 752

7 step: 1

Using the V4L2 port is a professional task. An alternative way is to find a camera

module that transfers data via normal buses, such as the LAN port or USB port. Note

that the module should also support time synchronization. Currently, we do not support

USB ports. For LAN, we support TCP client and TCP server. The following node is an

example from which we receive image messages from our GICI-board:

1 - streamer:
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2 tag: str_camera

3 output_tags: [fmt_camera]

4 type: tcp -client

5 ip: 192.168.1.101

6 port: 9021

7 buffer_length: 361472 # 752 * 480 + 512

The formator node is defined as

1 - formator:

2 io: input

3 tag: fmt_camera

4 width: 752

5 height: 480

6 type: image -pack

We implemented this pipeline for the convenience of debugging. After GICI-board

acquires images from V4L2, we pack the image into the image-pack format and publish

it to a TCP server. Then we use the above nodes to get images from GICI-board in a

computer. The image-pack format is

Table 2.42: Message format of image-pack

Preamble Length Data Tail

0xFECA00FF00FF 24 bit Length × 8 bit 0xCCFEFF00FF00

We provide the decoder and encoder for the image-pack type, see format image.c. You

can also instantiate your own decoder in formator.cpp if you want to use another message

type.

2.4.2 ROS Stream

As introduced in subsection 2.4.1, if you want to obtain data directly from the hardware,

some development work needs to be conducted. If you do not want to do so, an alternative

way is to use our ROS interface.

For IMU and camera, there are typical messages defined in ROS, i.e. sensor msgs::Imu

and sensor msgs::Image. And you can also find modules that support outputting the cor-

responding ROS messages. Note that you should choose a module that supports hardware

synchronization, and synchronize the IMUs and cameras to the GNSS time system.
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Table 2.43: Data format of image-pack

ID Field Description Type Bits Unit

1 sec Second part of timestamp. uint 32 s

2 nsec Nano-second part of timestamp. uint 32 ns

3 width Image width. uint 16

4 height Image height. uint 16

5 step Image step. uint 8

6 data Image data buffer. uint width ×
height ×
step × 8

For GNSS, there is no valid message type defined for raw GNSS measurement data

in ROS. Hence, we define the messages in GICI. You can find the message files in

ros wrapper/src/gici/msg. We conclude the message definitions below:

Table 2.44: GnssEphemeris.msg

Variable Description Type Unit

prn Satellite PRN number string

week GPS week uint16

sva SV accuracy (URA index) uint8 m

code GPS: code on L2, GAL/BDS:

data source

uint16

iode Issue of data, ephemeris uint8

iodc Issue of data, clock uint16

svh SV health uint8

Continued on next page
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Table 2.44 continued from previous page

Variable Description Type Unit

toc Time of clock float64 s

idot SV orbit parameter float64 rad/s

crs SV orbit parameter float64 m

deln SV orbit parameter float64 rad/s

M0 SV orbit parameter float64 rad

cuc SV orbit parameter float64 rad

e SV orbit parameter float64

cus SV orbit parameter float64 rad

A SV orbit parameter float64 m

toes SV orbit parameter float64 s

cic SV orbit parameter float64 rad

OMG0 SV orbit parameter float64 rad

cis SV orbit parameter float64 rad

i0 SV orbit parameter float64 rad

crc SV orbit parameter float64 m

omg SV orbit parameter float64 rad

OMGd SV orbit parameter float64 rad/s

tgd Group delay parameters float64[] s

f2 SV clock parameter float64 s/s2

f1 SV clock parameter float64 s/s

f0 SV clock parameter float64 s
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Table 2.45: GlonassEphemeris.msg

Variable Discription Type Unit

prn Satellite PRN number string

week GPS week uint16

frq Satellite frequency number int8

iode Issue of data, ephemeris uint8

svh SV health uint8

age Age of operation uint8 days

toe Epoch of epherides float64 s

tof Message frame time float64 s

pos Satellite position float64[] km

vel Satellite velocity float64[] km/s

acc Satellite acceleration float64[] km/s2

taun SV clock bias float64 s

gamn SV relative frequency bias float64

dtaun Delay between L1 and L2 float64 s

Table 2.46: GnssEphemerides.msg

Variable Description Type Unit

header Header of the message std msgs/Header

ephemerides GPS, BDS, Galileo ephemeris

of each satellites

GnssEphemeris[]

glonass ephemerides Glonass ephemeris of each

satellites

GlonassEphemeris[]

54



Table 2.47: GnssAntennaPosition.msg

Variable Description Type Unit

header Header of the message std msgs/Header

pos Station position in ECEF float64[]

Table 2.48: GnssIonosphereParameters.msg

Variable Description Type Unit

header Header of the message std msgs/Header

type Parameter type

(0:GPS,1:BDS,2:Galileo)

uint8

parameters Parameters float64[]

Table 2.49: GnssObservation.msg

Variable Description Type Unit

prn Satellite PRN number string

week GPS week uint16

tow GPS time of week float64 s

SNR Signal strengths uint16[] 10−3

dBHz

LLI Loss of lock indicators uint8[]

code Code indicators string[]

L Carrier phase cycles float64[] cycle

P Pseudoranges float64[] m

D Dopplers float64[] Hz
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Table 2.50: GnssObservations.msg

Variable Description Type Unit

header Header of the message std msgs/Header

observations Observations of each satellite GnssObservation[]

Table 2.51: GnssSsrCodeBias.msg

Variable Description Type Unit

prn Satellite PRN number string

week GPS week, SSR message uint16

tow GPS time of week, SSR mes-

sage

float64

iod Issue of data, SSR message uint32

udi SSR update interval float64

isdcb If differenced uint8

code Code indicators string[]

bias Code biases float64[] m

Table 2.52: GnssSsrCodeBiases.msg

Variable Description Type Unit

header Header of the message std msgs/Header

biases SSR code biases GnssSsrCodeBias[]
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Table 2.53: GnssSsrEphemeris.msg

Variable Description Type Unit

prn Satellite PRN number string

week GPS week, SSR message uint16

tow GPS time of week, SSR mes-

sage

float64

iod Issue of data, SSR message uint32

udi SSR update interval float64

iode Issue of data, ephemeris uint8

iodcrc Issue of data crc for BDS uint32

refd Sat ref datum (0:ITRF, 1:re-

gional)

uint8

deph Delta orbit (radial, along,

cross)

float64[] m

ddeph Dot delta orbit (radial, along,

cross)

float64[] m/s

dclk Delta clock (c0, c1, c2) float64[] s

Table 2.54: GnssSsrEphemerides.msg

Variable Description Type Unit

header Header of the message std msgs/Header

corrections SSR ephemeris corrections GnssSsrEphemeris[]
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Table 2.55: GnssSsrPhaseBias.msg

Variable Description Type Unit

prn Satellite PRN number string

week GPS week, SSR message uint16

tow GPS time of week, SSR mes-

sage

float64

iod Issue of data, SSR message uint32

isdpb If differenced uint8

udi SSR update interval float64

phase Phase indicators string[]

bias Phase biases float64[] m

Table 2.56: GnssSsrPhaseBiases.msg

Variable Description Type Unit

header Header of the message std msgs/Header

biases SSR phase biases GnssSsrPhaseBias[]

To use our GNSS messages, you should use GICI to collect your GNSS data using the

”Publish Data to ROS Topic” feature described in subsection 2.3.1.

2.4.3 Hardware Time Synchronization

Hardware Time Synchronization is to ensure the sensor measurements are stamped under

a unified hardware time system. Since GICI does not support time system offset estima-

tion, we strongly recommend you apply hardware time synchronization, or you may get

an unsatisfactory performance. Based on our experience, the precision of time synchro-

nization should be better than 5 ms for normal mobilities, such as car, Unmanned Aerial

Vehicle (UAV), and handed motion.
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To apply hardware time synchronization, the first thing is to appoint a time base

hardware. Commonly, it is a CPU driven by a crystal oscillator. A simple hardware time

synchronization system is to use the CPU to trigger all the sensors, record the trigger

time, and stamp the time to the corresponding arrived measurement data. However, the

CPUs for receiving the measurement data may be distributed because of the requirements

of processing speed and memory space. For example, we commonly use an MCU to trigger

the IMU and camera sensors because of its strong real-time performance, but acquiring

image data, especially for high-resolution data, is almost impossible for an MCU. Hence,

we use an MPU to acquire and handle the image data. In such cases, the different CPUs

should be synchronized together before they handle the sensors.

To synchronize multiple CPUs together, the time base CPU should generate synchro-

nization signals to the other CPUs, and the other CPUs receive the signal and tune their

local clocks. There are many kinds of synchronization signals, such as Pulse Per-Second

(PPS) and Precision Time Protocol (PTP). Let’s take PPS as an example to illustrate.

On the time base CPU side, a rising (or descending) edge is generated on an I/O port

every time when the time reaches integer seconds. And a package of data containing the

current time in seconds is transferred through a serial port after the edge signal has been

generated. On the slave CPU side, it captures the edge signal and serial message, and

adjusts its decimal time counter and integer time counter by a control algorithm.

After triggering a sensor, it starts measuring, and then sending the data to your

processor after the measurement has been finished. The intermediate will cause a delay

in time. This delay should be carefully calibrated because it may be hard for you to

distinguish which data is corresponding to the trigger time.

There are some sensors that do not support external triggering, such as the BMI088

IMU on our GICI-board. For such sensors, you can find the data delay in their manual

or ask the manufacturer for this parameter. Then you can stamp the data as the local

CPU time when you receive the data interrupt minus the delay.

For the GNSS receiver, it cannot be triggered for measuring because it is itself a timing

system. It can output the PPS signal to users, which delivers a nano-second-level timing

solution. Hence, for the systems that contain GNSS receivers, we appoint the receivers as

time bases (different GNSS receivers are naturally synchronized together), and let their

PPS signals synchronize all the CPUs. Then, all the sensor timestamps are synchronized

to the GNSS time.
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Chapter 3

Theories

3.1 Factor Graph Optimization

3.1.1 Describing Least-Squares Problem in Factor Graph

The multi-sensor integrated estimation problem can be described as a Least-Squares

(LSQ) problem by forming residuals from each measurement and state constraint. Opti-

mization is to solve the LSQ problem. And factor graph is an intuitive way to describe

the LSQ problem.

Given an LSQ problem:

min
χ

1

2

∑
i

ρi
Ä
∥zi − fi(χ)∥2Ri

ä
(3.1)

where χ is the parameters to be estimated, z is a measurement or constraint (for

simplicity, we will use ”measurement” to represent the ”measurement or constraint” in

the rest of this manual), f is a non-linear or linear model, R is the covariance of z, ρ is a

loss function, i is the index of measurements.

We can use a graph to describe the problem, see Figure 3.1. There are two kinds

of elements in a graph: nodes and edges. The nodes represent the estimated parame-

ters and measurements. The edges form connections between the parameter nodes and

measurement nodes, which are actually, the residuals.

Normally, each measurement z does not connect to every parameter given in χ. For

example, in a 15-parameter GNSS/INS loosely integration problem, the parameters are
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Figure 3.1: LSQ problem described by a graph.

Figure 3.2: LSQ problem described by a graph in a more general way.

positions, attitudes, speeds, accelerometer bias, and gyroscope bias. The GNSS position

measurement only connects to the position parameter in the corresponding epoch. The

INS integration error connects to all the parameters in the two adjacent epochs.

Hence, we can draw the graph in a more general way, see Figure 3.2. It clearly shows

the relationship between measurements and parameters. One can add or delete items by

editing the nodes and edges. One can also analyze the sparsity of the whole problem to

optimize the solving speed. It is more effective compared with directly dealing with the

residual and Jacobian equations.

The LSQ problem can be solved by many optimization methods. In GICI, we use

Ceres-Solver [4] to solve the LSQ problems. See http://ceres-solver.org/tutorial.

html for details.

3.1.2 Marginalization

If we consider state propagation between epochs, the dimension of the LSQ problem

increases over time. We cannot let it increase endlessly in real-time processing. Com-
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monly, we define the length of a sliding window to constrain the maximum dimension. In

this case, marginalization converts the old parameters and residuals as prior information,

rather than throwing them, to ensure optimality.

We follow the theories on [2] and describe the concept of marginalization in brief.

Given a linearized (or linear) LSQ problem z = Jδχ. We form a Gauss-Newton equation

Hδχ = b, where H = JTJ is the Hessian matrix, b = z − h(χ) is the residual vector.

Let us consider a set of states to be marginalized out, χµ, the set of all states related

to those by residual terms, χλ, and the set of remaining states, χρ. Due to conditional

independence, we can simplify the marginalization step by ignoring the states χρ and only

apply it to a sub-problem: Hµµ Hµλ1

Hλ1µ Hλ1λ1

 δχµ

δχλ

 =

 bµ

bλ1

 (3.2)

Application of the Schur complement operation yields:

H∗
λ1λ1

δχλ = b∗λ1
(3.3a)

H∗
λ1λ1

:= Hλ1λ1 −Hλ1µH
−1
µµHµλ1 (3.3b)

b∗λ1
:= bλ1 −Hλ1µH

−1
µµ bµ (3.3c)

where b∗λ1
and H∗

λ1λ1
are nonlinear functions of δχµ and δχλ.

Equation 3.3a puts a new residual item into the LSQ problem, which represents all the

prior information that has been marginalized. We can describe this process in a graph,

see Figure 3.3. The old parameters and residuals are converted to a residual item through

the marginalization process. This process is applied repeatedly as time goes on.

3.2 FGO structure in GICI

3.2.1 Graph Structure

There are two kinds of graph structures used in GICI, the single-epoch structure, and the

sliding-window structure. If we do not need to consider the time propagation between

epochs, we will use the single-epoch structure. This structure is used in the GNSS SPP and

the GNSS RTD. If the time propagation constraints, e.g. the INS pre-integration error,
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(a) Graph before marginalization.

(b) Graph after marginalization.

Figure 3.3: Marginalization process described in graphs.

63



the velocity-position model, and the constant variable constraint, should be applied, we

will use the sliding-window structure. This structure is used in the rest of the estimators.

The single-epoch structure can be described by Figure 3.1. We solve the LSQ problem

for each epoch of measurements separately since we assume that there is no time propa-

gation between epochs. We also do not need to apply marginalization because no prior

information can be connected to a new epoch.

The sliding-window structure can be described by Figure 3.3(b). We maintain a win-

dow of epochs and solve the whole graph every time when a new epoch has been formed.

The oldest epochs will be marginalized if the window is full.

3.2.2 Wrapping

No matter which kind of graph structure is used, we need to define the residual and

Jacobian for each measurement, and the ways to edit the graph.

We call these definitions factors. The factors are used to form edges between parameter

nodes and measurement nodes. We implement a lot of factors for different sensors working

in different scenarios. We will introduce them in the following sections. Note that there

are many frame transformation operations in the formulations, please see Appendix A for

the definitions.

Moreover, to make developers easy to form their graphs, we implement base classes

for each kind of sensor, which contain the adding, erasing, marginalizing, rejecting, and

accessing functions for parameter and measurement nodes. The multi-sensor fusion prob-

lem can be implemented by simply inheriting the base classes and calling their functions.

You can refer to xxx estimator base.h files for details.

3.3 GNSS Loose Integration Error Factors

Generally, a GNSS receiver can provide three levels of measurement: 1) Solutions, includ-

ing position and velocity in a global frame. 2) Raw measurements, including pseudorange,

doppler frequency, and carrier phase. 3) Base-band data, i.e., the intermediate frequency

signal. Thereby, there are three kinds of integration formulation: loose integration, tight

integration, and deep integration, correspondingly.

In GICI, we implement loose integration and tight integration formulations. We will
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introduce the former in the reset of this section, and the latter will be introduced in

section 3.4.

3.3.1 Position Error Factor

The position solution provided by a GNSS receiver is in the global frame WGF . We

implement two parameterization methods to handle the GNSS measurements. One forms

the parameters in a GNSS-receiver-centered global frame WGF , and the other forms in an

INS-centered local frame WF . We will introduce them separately.

GNSS-receiver-centered global frame formulation

This formulation can be used when we do not need to estimate the orientation.

The related parameters are

χk :=
[
WGpT

k

]T
(3.4)

Given a GNSS position measurement WGp̂T
k at epoch k, The residual is

rk :=
WGp̂k − WGpk (3.5)

The Jacobian matrix is

Jk := −I (3.6)

The covariance matrix is a 3× 3 matrix generated by the GNSS position algorithm.

INS-centered local frame formulation

If one wants to estimate the orientation, the estimation center is commonly defined as the

center of an IMU sensor. So we define the INS-centered formulation here to handle this

scenario.

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr

óT
(3.7)

where Btr is the GNSS receiver position in the body frame, i.e. the lever-arm.
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The residual is

rk :=
WGp̂k − (RWG

W (Wpk +RW
B,k

Btr) +
WGtW ) (3.8)

The Jacobian matrix is

Jk := −RWG
W

[
I −⌊RW

B,k
Btr×⌋ RW

B,k

]
(3.9)

The covariance matrix is a 3× 3 matrix generated by the GNSS position algorithm.

3.3.2 Velocity Error Factor

Similarly, the velocity provided by a GNSS receiver is also in the global frame WGF . We

implement two parameterization methods to handle the GNSS measurements.

GNSS-receiver-centered global frame formulation

This formulation can be used when we do not need to estimate the orientation.

The related parameters are

χk :=
[
WGvT

k

]T
(3.10)

Given a GNSS velocity measurement WGzT
k at epoch k, the residual is

rk :=
WGzk − WGvk (3.11)

The Jacobian matrix is

Jk := −I (3.12)

The covariance matrix is a 3×3 matrix generated by the GNSS positioning algorithm.

INS-centered local frame formulation

The INS-centered formulation is applied to handle scenarios containing an IMU.

The related parameters are

χk :=
î
qW
B,k

T
,WvT

k ,
BtTr
óT

(3.13)
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The residual is

rk :=
WGzk −RWG

W (Wvk + ⌊ωk×⌋RW
B,k

Btr) (3.14)

The Jacobian matrix is

Jk := −RWG
W

[
0 −⌊ωk×⌋⌊RW

B,k
Btr×⌋ I ⌊ωk×⌋RW

B,k

]
(3.15)

where ωk is the angular velocity of the interval k in the WF .

The covariance matrix is a 3×3 matrix generated by the GNSS positioning algorithm.

3.4 GNSS Tight Integration Error Factors

The GNSS signal structure can be simply described by Figure 3.4. The GNSS signal is

generally composed of the multiplication of the carrier frequency (Carrier), the spreading

code (Code), and the navigation data (Data). The spreading codes are also called PRN

(pseudo-random noise) codes. The pseudorange measurement is obtained by decoding

the spreading code, and the carrier phase measurement is obtained by stripping the code

and data from the carrier. There is also a doppler shift caused by the relative motivation

between the satellite and the user. The doppler measurement is obtained by measuring

the frequency shift of the carrier.

Figure 3.4: GNSS signal structure [1].
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Generally, the accuracy of pseudorange, doppler-velocity, and phase-range are meter-

level, decimeter-per-second-level, and millimeter-level, respectively. Hence, for standard

precision positioning (meter- to decimeter-level) formulations, e.g. SPP and RTD, we

just use pseudorange and doppler. For precise positioning (centimeter- to millimeter-

level) formulations, e.g. PPP and RTK, we additionally use the carrier phase. We will

describe the measurements in the rest of this section, and introduce the formulations in

section 3.8.

3.4.1 Pseudorange Error Factors

The pseudorange measurement can be described as

P s
r,i = ρsr + c (dtr − dts) + Isr,i + T s

r + dr,i − dsi + εP (3.16)

where indices s, r, and i refer to the satellite, receiver, and carrier frequency band,

respectively. ρsr = ∥pr − ps∥2is the geometry distance between the receiver antenna phase

center and satellite phase center. c is the speed of light in the vacuum. dtr and dts

represent the receiver clock offset at the signal receiving time and the satellite clock offset

at the signal transmitting time respectively. Isr,i is the ionospheric delay along the signal

propagation path at the i-th frequency. T s
r is the tropospheric delay of the signal path.

dr,i and dsi are code biases for receiver and satellite. εP is the un-modeled errors, mainly

containing the multipath and random noise.

There are several methods to handle these items. In GICI, we implement 12 formula-

tions, which are the permutations of 2 frame definitions, 3 GNSS linear combination types,

and 2 ways to handle atmosphere delays. The frame definitions are the GNSS-receiver-

centered global (GRCG) frame and the INS-centered local (ICL) frame. The GNSS linear

combination types are undifferenced and uncombined (UDUC), single-difference (SD),

and double-difference (DD). The 2 ways to handle atmosphere delays are correcting by

model and estimating. The 12 formulations are listed in Table 3.1. We will illustrate

them in detail.

Common Theories

Here we illustrate some common procedures for handling some variables:

1. Satellite position ps and satellite clock offset dts.
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Table 3.1: Formulations of pseudorange estimation.

Frame Combination Atmosphere Usage in GICI

Formulation 1 GRC UDUC Correct SPP

Formulation 2 GRC UDUC Estimate PPP

Formulation 3 ICL UDUC Correct SPP-based tightly in-

tegration

Formulation 4 ICL UDUC Estimate PPP-based tightly in-

tegration

Formulation 5 GRC SD Eliminated SDGNSS

Formulation 6 GRC SD Estimate

Formulation 7 ICL SD Eliminated

Formulation 8 ICL SD Estimate

Formulation 9 GRC DD Eliminated RTD and RTK

Formulation 10 GRC DD Estimate

Formulation 11 ICL DD Eliminated RTD- and RTK-based

tightly integration

Formulation 12 ICL DD Estimate
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In SPP, RTD, and short-baseline RTK, the two variables are computed by ephemeris,

which is broadcasted by the navigation satellites. In PPP and long-baseline RTK, they

are computed by precise ephemeris, which, in real-time cases, is broadcasted by some

special navigation satellites (like BDS B2b), commercial satellites, or the internet.

2. Ionosphere delay Isr,i.

In SPP, the ionosphere delay is computed by models

Isr,i = I(ι) (3.17)

where ι is a vector of parameters broadcasted by navigation satellites. I is the iono-

sphere model. We use the Klobuchar [5] model in GICI.

In RTD and short-baseline RTK, the ionosphere delay is eliminated by the double-

difference combination.

In PPP and long-baseline RTK, the ionosphere delay at the base frequency for each

satellite Isr,1 is estimated. For the other frequencies, we only consider the first-order

ionosphere delay, i.e.

Isr,i = γiI
s
r,1, γi =

f 2
1

f 2
i

(3.18)

where fi is the signal frequency at the signal channel i.

The ionosphere delay can also be computed by other models, such as the Satellite

Based Augmentation System (SBAS) model, the Global Ionosphere Map (GIM) model,

and the PPP-RTK ionosphere grid model. These models are not implemented in GICI,

so we do not discuss them in this manual.

3. Troposphere delay T s
r .

In GICI, the troposphere delay is modeled as two parts, the hydro-static delay T s
r,h,

and the wet delay T s
r,w, i.e.

T s
r = T s

r,h + T h
r,w (3.19)

The hydro-static delay in the zenith direction, calling zenith total delay (ZTD), is

computed by the Saastamoinen model [6]. And the ZTD is mapped to satellites according

to the hydro-static part of the Global Mapping Function (GMF) [7]:

T s
r,h = Gh(αe)TZ,h, TZ,h = S(WGp) (3.20)

where αe is the elevation angle of the satellite.
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In SPP, we only consider the hydro-static delay.

In RTD and short-baseline RTK, the troposphere delay is eliminated by the double-

difference combination.

In PPP and long-baseline RTK, we estimate the wet delay in the zenith direction TZ,w,

and map TZ,w to satellites according to the GMF wet model:

T s
r,w = Gw(αe)TZ,w (3.21)

There are also other models dealing with the troposphere delay, we do not discuss

them in this manual.

4. Satellite code bias dsi .

If the between-receiver difference (SD or DD) is applied, this item is eliminated and

does not need to be handled separately. Otherwise, it should be treated carefully. We

will discuss this situation in the following.

The absolute values of code biases are unobservable because they are coupled with

clock biases. So we can only work with the relative values. To correct the satellite code

biases, we must first define the base frequency of the satellite clock, and all the corrections

should be relative to the base frequency. For the broadcast ephemeris, the base frequencies

for GPS, GLONASS, BDS, and Galileo are L1/L2 IF combination (see Appendix B),

G1/G2 IF combination, B3, and E1/E5a IF combination, respectively. These definitions

vary for the precise ephemeris products, so we do not introduce them here. By defining

the base frequency, all the satellite code biases correction operations aim to arrange the

measurement to the base frequency. Take the GPS system as an example, the broadcasted

satellite clock offset dt
s
contains the true clock offset dts and the code bias in the base

frequency:

dt
s
= dts − (

γ2
γ2 − 1

ds1 −
1

γ2 − 1
ds2) = dts − dsIF (3.22)

Since the satellite clock offset is unique for all satellites (in one navigation system) and

all frequencies, one must arrange the pseudorange measurements to the base frequency to

make them consistent.

There are three kinds of products to correct satellite code biases, Total Group Delay

(TGD), Differential Code Bias (DCB), and Zero-Differenced Code Bias (ZDCB).

The TGD, together with the Inter-System Corrections (ISC), is contained in the broad-

cast ephemeris, which describes the satellite code bias between frequencies. For GPS, the
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TGD is defined as

dsTGD :=
1

1− γ2
(ds1 − ds2) = dsIF − ds1 =

1

γ2
(dsIF − ds2) (3.23)

which describes the satellite code bias between the frequencies L1 and L2. The ISCs,

similarly, describe the biases between other frequencies.

The DCB is commonly provided in text files by the International GNSS Service (IGS)

analysis centers or other institutions. The definition is

dsDCB,i,j := dsi − dsj (3.24)

which is similar to the TGD and ISCs. The difference is that the DCB products are

more complete. The TGD and ISCs only consider the code biases between frequencies,

but omit the code biases between codes within one frequency. For example, there are L1

C/A codes and L1 P codes in the GPS L1 frequency, the TGD and ISCs consider the

code bias between the two frequencies as zero, while the DCB products publish this bias.

This inner bias is relatively small (decimeter-level), so it can be omitted in the standard

precision formulations, while it should be considered in high precision formulations.

The ZDCB is defined the same as Equation 3.23, i.e. be relative to the base frequency.

The difference is that it provides complete code biases like the DCB and its base frequency

varies depending on the product provider. It is commonly contained in the State-Space

Representation (SSR) message and broadcasted by specific satellites or the internet.

5. Receiver code bias dr,i.

If the between-satellite difference (BSD or DD) is applied, this item is eliminated.

Otherwise, it should be handled. We will discuss this situation in the following.

The receiver code biases are also unobservable. It will be absorbed into the receiver

clock offset parameter and the ionosphere delay parameter during estimation.

For single-frequency processes, the receiver code bias is directly absorbed into the

receiver clock offset parameter, i.e.

dtr,k = dtr,k + dr,1 (3.25)

For double-frequency processes, the receiver code bias is absorbed into both the re-

ceiver clock offset parameter and the ionosphere delay parameter, i.e.

dtr,k = dtr,k + dr,IF (3.26a)
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I
s

r,1 = Isr,1 −
f 2
j

f 2
i − f 2

j

(dr,1 − dr,2) (3.26b)

For multi-frequency processes, the receiver code bias cannot be fully absorbed by the

two parameters. So we should additionally estimate a bias for each frequency other than

the first two frequencies. This bias is called the Inter-Frequency Bias (IFB), the definition

is

dr,IFBi
= dr,IF − γif

2
2

f 2
1 − f 2

2

(dr,1 − dr,2) + dr,i (3.27)

Rigorously, the above theories do not hold for GLONASS. Because the signal of

GLONASS is Frequency Division Multiple Access (FDMA), the frequency differs between

satellites, which leads that there are IFBs between satellites. Ideally, we can estimate

the IFBs for each satellite, but it is time-consuming. In GICI, we omit the IFBs between

the GLONASS satellites and give GLONASS pseudorange a relatively larger STD prior

because the un-modeled IFBs will be left in the residuals.

6. Receiver clock offset dtr,k.

The receiver clock is unique for each system, but differs from systems. That is to say,

if we want to use GPS, GLONASS, BDS, and Galileo together, we should estimate four

receiver clocks dtGr,k, dt
R
r,k, dt

C
r,k, and dtEr,k. To simplify, we use dtr,k to represent all the

necessarily estimated receiver clocks in the rest of this manual.

Formulation 1

The related parameters are

χk :=
[
WGpT

k , dtr,k
]T

(3.28)

Given a pseudorange measurement P s
r,i,k at a frequency i of a satellite s at epoch k,

after correcting all the necessary errors, the residual is

rsr,i,k := P s
r,i,k −

∥∥WGtk − psk
∥∥2 − cdtr,k (3.29)

Note that, according to Equation 3.25, the observable receiver clock offset is dtr,k, but

not the true value dtr,k, which means that the estimated receiver clock offset is biased.

The Jacobian matrix is

Jk :=
[
es
r,k −1

]
(3.30)

where es
r,k is a normalized translation vector from the GNSS receiver to the satellite.
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The covariance matrix is a diagonal matrix with the dimension of the number of

pseudorange measurements. For each diagonal element, the variance is computed by [1]

σ2
P = F s2R2

r

(
a2σ + b2σ sin(αe)

)
+ σ2

eph + σ2
ion + σ2

trop + σ2
bias (3.31)

where F s is the satellite system error factor. Rr is the code to carrier-phase error ratio.

aσ and bσ are the carrier-phase error factors. The above 4 parameters can be modified by

users via the ”gnss error parameter” options. σeph, σion, σtrop, and σbias are the STD of

ephemeris error, ionosphere correction model error, troposphere correction model error,

and code bias error, respectively. They are set as fixed values.

Formulation 2

The related parameters are

χk :=
[
WGpT

k , dtr,k, I
s
r,1,k, TZ,w,k, dr,IFBi

]T
(3.32)

where dr,IFBi
should be estimated only when the number of frequencies we are using

is larger than two.

The residual is

rsr,i,k := P s
r,i,k −

∥∥WGtk − psk
∥∥2 − cdtr,k − I

s

r,i,k − Gw(αc)TZ,w,k − dr,IFBi
(3.33)

The Jacobian matrix is

Jk :=
[
es
r,k −1 −γi −Gw(αc) −1

]
(3.34)

The covariance computation is the same as formulation 1. σion and σtrop are set as

zeros.

Formulation 3

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtr,k

óT
(3.35)

The residual is the same as Equation 3.29, except that WGpk should be replaced by

WGpk = RWG
W (Wpk +RW

B,k
Btr) +

WGtW (3.36)
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Renaming Equation 3.30 as J0 and Equation 3.9 as J1, the Jacobian matrix is:

Jk := J0

 J1 0

0 1

 (3.37)

The covariance computation is the same as formulation 1.

Formulation 4

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtr,k, I

s
r,1,k, TZ,w,k, dr,IFBi

óT
(3.38)

The residual is the same as Equation 3.33, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.34 as J0 and Equation 3.9 as J1, the Jacobian matrix is:

Jk := J0

 J1 0

0 I

 (3.39)

The covariance computation is the same as formulation 2.

Formulation 5

After applying the SD (see section B.2), there are some differences compared with the

UDUC formulations: 1) The measurements and some parameters become the SD form.

2) Satellite code bias is fully eliminated, so we do not need to correct TGDs, DCBs, or

ZDCBs. 3) We think most of the ephemeris errors are eliminated. 4) We think most of

the atmosphere errors are eliminated, so we do not need to apply the model correction.

The related parameters are

χk :=
[
WGpT

k , dtrrb,k
]T

(3.40)

Given a SD pseudorange measurement P s
rrb,i,k

, the residual is

rsrrb,i,k := P s
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 − cdtrrb,k (3.41)
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where WGtrb,k is a constant value provided by the base station.

The Jacobian matrix is the same as Equation 3.30.

The covariance matrix is a diagonal matrix with the dimension of the number of SD

pseudorange measurements. For each diagonal element, the variance is computed by

σ2
PSD

= 2F s2R2
r

(
a2σ + b2σ sin (αe)

)
(3.42)

Formulation 6

We estimate the remaining atmosphere errors in this formulation.

The related parameters are

χk :=
[
WGpT

k , dtrrb,k, I
s
rrb,1,k

, TZ,w,k, TZ,w,rb,k, drrb,IFBi

]T
(3.43)

The residual is

rsrrb,i,k :=P s
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2−

cdtrrb,k − I
s

rrb,1,k
− Gw(αc)TZ,w,k + Gw(αc)TZ,w,rb,k − drrb,IFBi

(3.44)

The Jacobian matrix is

Jk :=
[
es
r,k −1 −γi −Gw (αc) Gw (αc) −1

]
(3.45)

The covariance computation is the same as formulation 5.

Formulation 7

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtrrb,k

óT
(3.46)

The residual is the same as Equation 3.41, except that WGpk should be replaced by

Equation 3.36.

The Jacobian matrix is the same as Equation 3.37.

The covariance computation is the same as formulation 5.
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Formulation 8

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtrrb,k, I

s
rrb,1,k

, TZ,w,k, TZ,w,rb,k, drrb,IFBi

óT
(3.47)

The residual is the same as Equation 3.44, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.45 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.39.

The covariance computation is the same as formulation 5.

Formulation 9

Given SD measurements, the DD measurements are generated by further applying dif-

ferential between satellites (see section B.2). The difference between the DD and SD

measurements is: The receiver clock offset and code biases are fully eliminated (Not hold

for GLONASS because the receiver code biases are not consistent between satellites, so

we amplify the covariance of the DD GLONASS pseudorange).

The related parameters are

χk :=
[
WGpT

k

]T
(3.48)

Given a DD pseudorange measurement P ssb
rrb,i,k

, the residual is

rssbrrb,i,k
:= P ssb

rrb,i,k
−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 + ∥∥WGtk − psbk

∥∥2 − ∥∥WGtrb,k − psbk
∥∥2

(3.49)

The Jacobian matrix is

Jk :=
[
es
r,k − esb

r,k

]
(3.50)

The covariance matrix is a diagonal matrix with the dimension of the number of DD

pseudorange measurements. For each diagonal element, the variance is computed by

σ2
PDD

= 4F s2R2
r

(
a2σ + b2σ sin (αe)

)
(3.51)

Formulation 10

We estimate the remaining atmosphere errors in this formulation.
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The related parameters are

χk :=
î
WGpT

k , I
s
rrb,1,k

, Isbrrb,1,k, TZ,w,k, TZ,w,rb,k

óT
(3.52)

The residual is

rsrrb,i,k :=P ssb
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 + ∥∥WGtk − psbk

∥∥2 − ∥∥WGtrb,k − psbk
∥∥2−

I
s

rrb,1,k
+ I

sb
rrb,1,k

− Gw(αc)TZ,w,k + Gw(αc)TZ,w,rb,k

(3.53)

The Jacobian matrix is

Jk :=
[
es
r,k − esb

r,k −1 1 −γi −Gw (αc) Gw (αc)

]
(3.54)

The covariance computation is the same as formulation 9.

Formulation 11

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr

óT
(3.55)

The residual is the same as Equation 3.49, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.50 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.37.

The covariance computation is the same as formulation 9.

Formulation 12

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , I

s
rrb,1,k

, Isbrrb,1,k, TZ,w,k, TZ,w,rb,k

óT
(3.56)

The residual is the same as Equation 3.53, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.54 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.39.

The covariance computation is the same as formulation 9.
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3.4.2 Carrier Phase Error Factors

The carrier phase measurement can be described as

Ls
r,i = ρsr + c (dtr − dts) + Isr,i + T s

r + br,i − bsi +N s
r,i + εL (3.57)

where br,i and bsi are phase biases for receiver and satellite. N s
r,i is the phase ambiguity,

which has an integer nature.

Similar to the pseudorange measurement, there are also 12 formulations categorized

by frame definitions, GNSS linear combination types, and ways to handle atmosphere

delays. The 12 formulations are listed in Table 3.2.

Table 3.2: Formulations of carrier phase estimation.

Frame Combination Atmosphere Usage in GICI

Formulation 1 GRC UDUC Correct

Formulation 2 GRC UDUC Estimate PPP

Formulation 3 ICL UDUC Correct

Formulation 4 ICL UDUC Estimate PPP-based tightly in-

tegration

Formulation 5 GRC SD Eliminated

Formulation 6 GRC SD Estimate

Formulation 7 ICL SD Eliminated

Formulation 8 ICL SD Estimate

Formulation 9 GRC DD Eliminated RTK

Formulation 10 GRC DD Estimate

Formulation 11 ICL DD Eliminated RTK-based tightly in-

tegration

Formulation 12 ICL DD Estimate

Common Theories

Except for the common theories described in subsection 3.4.1, there are still some other

error items that should be handled for the carrier phase.
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1. Satellite phase bias bsi .

If the between-receiver difference (SD or DD) is applied, this item is eliminated. Oth-

erwise, it should be handled. We will discuss this situation in the following.

Similar to the code bias dsi , the absolute value of phase bias bsi is also unobservable.

During estimation, it is absorbed into the ambiguity parameter N s
r,i. If we do not want

to resolve the integer ambiguity value, we do not need to care about bsi because it just

affects N s
r,i, but not the position parameter. However, if we want to resolve the integer

ambiguity, bsi should be corrected to recover the integer nature of N s
r,i.

There are also services for bsi corrections (Note that the biases are also relative to base

frequencies). The services can be gotten by either internet, commercial satellites or file

centers.

After applying the satellite phase bias corrections, the integer ambiguity is still un-

recovered. Because the corrections are relative to base frequencies and there is still a

non-integer value unsolved. So a BSD should be formulated to eliminate this float value.

Then, the BSD ambiguity can be used for ambiguity resolution.

2. Receiver phase bias br,i.

If no between-satellite difference (BSD or DD) is applied, the receiver phase bias br,i
will be absorbed into the ambiguity parameter N s

r,i during estimation, which will also

break the integer nature of ambiguity. Unfortunately, br,i cannot be compensated by any

estimation or correction technologies. Hence, if one wants to resolve the integer ambiguity,

a between-satellite difference must be applied.

3. Phase wind-up, Phase Center Offset (PCO), Phase Center Variation (PCV), earth

tide.

These error items do not appear in the measurement equations because they can are

not critical errors (but still affects the performance of precise GNSS algorithms) and can

be corrected by models or products completely. The theories have been described in the

appendix of the RTKLIB manual [1] in detail, so we will not elaborate further on these

matters.

Formulation 1

We do not support this formulation because the residuals after correcting the atmospheric

delays are far larger (meter-level) than the typical precision of carrier phase measurement
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(millimeter-level). Hence, the carrier phase measurement will not be effective in this

situation.

Formulation 2

The related parameters are

χk :=
[
WGpT

k , dtr,k, I
s
r,1,k, TZ,w,k, N

s
r,i,k

]T
(3.58)

The residual is

rsr,i,k := Ls
r,i,k −

∥∥WGtk − psk
∥∥2 − cdtr,k − I

s

r,i,k − Gw(αc)TZ,w,k −N s
r,i,k (3.59)

The Jacobian matrix is

Jk :=
[
es
r,k −1 −γi −Gw(αc) −1

]
(3.60)

The covariance matrix is a diagonal matrix with the dimension of the number of carrier

phase measurements. For each diagonal element, the variance is computed by

σ2
L = F s2

(
a2σ + b2σ sin(αe)

)
+ σ2

eph (3.61)

Formulation 3

We do not support this formulation for the same reason as formulation 1.

Formulation 4

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtr,k, I

s
r,1,k, TZ,w,k, N

s
r,i,k

óT
(3.62)

The residual is the same as Equation 3.59, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.60 as J0 and Equation 3.9 as J1, the Jacobian matrix is:

Jk := J0

 J1 0

0 I

 (3.63)

The covariance computation is the same as formulation 2.
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Formulation 5

The related parameters are

χk :=
[
WGpT

k , dtrrb,k, N
s
rrb,i,k

]T
(3.64)

where N s
rrb,i,k

is the SD ambiguity.

The residual is

rsrrb,i,k := Ls
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 − cdtrrb,k −N s

rrb,i,k
(3.65)

The Jacobian matrix is

Jk :=
[
es
r,k −1 −1

]
(3.66)

The covariance matrix is a diagonal matrix with the dimension of the number of SD

carrier phase measurements. For each diagonal element, the variance is computed by

σ2
LSD

= 2F s2
(
a2σ + b2σ sin (αe)

)
(3.67)

Formulation 6

The related parameters are

χk :=
[
WGpT

k , dtrrb,k, I
s
rrb,1,k

, TZ,w,k, TZ,w,rb,k, N
s
rrb,i,k

]T
(3.68)

The residual is

rsrrb,i,k :=Ls
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2−

cdtrrb,k − I
s

rrb,1,k
− Gw(αc)TZ,w,k + Gw(αc)TZ,w,rb,k −N s

rrb,i,k

(3.69)

The Jacobian matrix is

Jk :=
[
es
r,k −1 −γi −Gw (αc) Gw (αc) −1

]
(3.70)

The covariance computation is the same as formulation 5.
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Formulation 7

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtrrb,k, N

s
rrb,i,k

óT
(3.71)

The residual is the same as Equation 3.65, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.66 as J0 and Equation 3.9 as J1, the Jacobian matrix is:

Jk := J0

 J1 0

0 1

 (3.72)

The covariance computation is the same as formulation 5.

Formulation 8

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , dtrrb,k, I

s
rrb,1,k

, TZ,w,k, TZ,w,rb,k, N
s
rrb,i,k

óT
(3.73)

The residual is the same as Equation 3.69, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.70 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.63.

The covariance computation is the same as formulation 5.

Formulation 9

The related parameters are

χk :=
î
WGpT

k , N
s
rrb,i,k

, N sb
rrb,i,k

óT
(3.74)

where N sb
rrb,i,k

is the SD ambiguity of the base satellite. We estimate the SD ambiguities

instead of the DD ambiguities to avoid having to frequently handle base satellite switching

due to signal disruption from shadowing or dropouts.
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The residual is

rssbrrb,i,k
:=Lssb

rrb,i,k
−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 + ∥∥WGtk − psbk

∥∥2 − ∥∥WGtrb,k − psbk
∥∥2−

N s
rrb,i,k

+N sb
rrb,i,k

(3.75)

The Jacobian matrix is

Jk :=
[
es
r,k − esb

r,k,−1, 1

]
(3.76)

The covariance matrix is a diagonal matrix with the dimension of the number of DD

carrier phase measurements. For each diagonal element, the variance is computed by

σ2
LDD

= 4F s2
(
a2σ + b2σ sin (αe)

)
(3.77)

Formulation 10

The related parameters are

χk :=
î
WGpT

k , I
s
rrb,1,k

, Isbrrb,1,k, TZ,w,k, TZ,w,rb,k, N
s
rrb,i,k

, N sb
rrb,i,k

óT
(3.78)

The residual is

rsrrb,i,k :=P ssb
rrb,i,k

−
∥∥WGtk − psk

∥∥2 + ∥∥WGtrb,k − psk
∥∥2 + ∥∥WGtk − psbk

∥∥2 − ∥∥WGtrb,k − psbk
∥∥2−

I
s

rrb,1,k
+ I

sb
rrb,1,k

− Gw(αc)TZ,w,k + Gw(αc)TZ,w,rb,k −N s
rrb,i,k

+N sb
rrb,i,k

(3.79)

The Jacobian matrix is

Jk :=
[
es
r,k − esb

r,k −1 1 −γi −Gw (αc) Gw (αc) −1 1

]
(3.80)

The covariance computation is the same as formulation 9.

Formulation 11

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , N

s
rrb,i,k

, N sb
rrb,i,k

óT
(3.81)
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The residual is the same as Equation 3.75, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.76 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.72.

The covariance computation is the same as formulation 9.

Formulation 12

The related parameters are

χk :=
î
WpT

k , q
W
B,k

T
, BtTr , I

s
rrb,1,k

, Isbrrb,1,k, TZ,w,k, TZ,w,rb,k, N
s
rrb,i,k

, N sb
rrb,i,k

óT
(3.82)

The residual is the same as Equation 3.79, except that WGpk should be replaced by

Equation 3.36.

Renaming Equation 3.80 as J0 and Equation 3.9 as J1, the Jacobian matrix is the

same as Equation 3.39.

The covariance computation is the same as formulation 9.

3.4.3 Doppler Error Factors

The doppler error can be described as

Ds
r,i = ρ̇sr + c (dfr,k − df s) + εD (3.83)

where dfr,k and df s are the receiver and satellite clock frequency offsets.

Since the doppler is less affected by errors, there are only two typical formulations,

categorized by their frames of reference. The doppler measurements are used in all the

algorithms listed in Table 3.1 and Table 3.2.

Formulation 1

This formulation is formed under the GRC frame. The related parameters are

χk :=
[
WpT

k ,
WGvT

k , dfr,k
]T

(3.84)
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Given a doppler measurement Ds
r,i,k at a frequency i of a satellite s at epoch k, the

residual is

rsr,i,k := Ds
r,i,k −

(
vsk − WGvk

)
·
(
psk − WGtk

)
− cdf r,k (3.85)

where v represents velocity, · is dot product.

The Jacobian matrix is

Jk :=
[
0 es

r,k −1

]
(3.86)

The covariance matrix is a diagonal matrix with the dimension of the number of

doppler measurements. For each diagonal element, the variance is computed by

σ2
D = F s2σ2

D (3.87)

where σD is doppler error factor, which can be modified via the ”gnss error parameter”

options.

Formulation 2

This formulation is formed under the ICL frame. The related parameters are

χk :=
î
WpT

k ,
WvT

k , q
W
B,k

T
, BtTr , dfr,k

óT
(3.88)

The residual is the same as Equation 3.85, except that WGpk should be replaced by

Equation 3.36 and WGvk should be replaced by

WGvk = RWG
W

(
Wvk + ⌊ωk×⌋RW

B,k
Btr
)

(3.89)

where ωk is the body anguler velocity.

Renaming Equation 3.86 as J0 and Equation 3.15 as J1, the Jacobian matrix is:

Jk := J0

 J1 0

0 1

 (3.90)

The covariance computation is the same as formulation 1.
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3.5 Camera Error Factors

A feature-based visual odometry problem uses tracked features between two frames to de-

fine constraints, namely reprojection error. In GICI, we use point features to apply visual

estimation. subsection 3.5.1 will introduce how the features are detected and tracked.

Then, subsection 3.5.2 will illustrate how the features are used in the estimator.

3.5.1 Feature Detection and Tracking

We use the Features from Accelerated Segment Test (FAST) [8] method for feature de-

tection and the Lucas-Kanade (LK) optical flow [9] method for feature tracking. Both of

the two methods are famous, so we do not elaborate on them further.

After that, we have a set of tracked features. Then, we should apply triangulation to

get the initial depth of the feature, and thereby the initial position of the corresponding

landmarks (features expressed in the world frame). Now we can feed the landmarks and

the corresponding features into the estimator.

3.5.2 Reprojection Error Factor

The reprojection error uses tracked features to estimate the camera pose and landmark

positions. The related parameters are

χc,k :=
[
Wpk, q

W
k , Btc, q

B
C ,

Wpl

]T
(3.91)

where Btc and qB
C are the translation and orientation parts of camera extrinsic. Wpl

is a vector of landmark positions Wpl.

Given a feature Cp̃l (2× 1 dimension), the residual can be written as

rC,k :=
Cp̃l − πC

(
RC

B

(
RB

W

(
Wpl − Wpk

)
− Btc

))
(3.92)

where πC(·) denotes the camera projection model (which may include distortion).

The Jacobian matrix is

Jk := Jπ

[
RC

BR
B
W Jp

θk
RC

B Jp
θC

−RC
BR

B
W

]
(3.93)

with

Jp
θk

= −RC
BR

B
W ⌊
(
Wpl − Wpk

)
×⌋ (3.94)
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Jp
θC

= −RC
B⌊
(
RB

W

(
Wpl − Wpk

)
− Btc

)
×⌋ (3.95)

where Jπ is the Jacobian matrix of πC (·). It varies according to the projection model

and distortion model employed. So we do not concretize it here.

The covariance is a 2-dimensional diagonal matrix. Each element is the STD of track-

ing error in pixel, which is defined in the ”feature error std” option.

3.6 INS Error Factors

An Inertial Measurement Unit (IMU) can provide linear acceleration and angular velocity

measurements, and is often used for time-propagation between states. By employing

motion integration mechanics, the system is known as Inertial Navigation System (INS).

Directly applying the INS mechanics into FGO is time-consuming. This is because

the formulations are dependent on estimated parameters, whose values constantly change

during iteration, making it necessary to repeatedly redo the integration. In response,

we use INS pre-integration [10] to isolate the integration procedure from most of the

estimated states. This algorithm will be introduced in subsection 3.6.1.

A sole INS estimator suffers from drift over time due to the multi-order integration

of bias and random noises. Integrating INS with other sensors is a sufficient way to

mitigate the drift. But even so, the estimation of INS-relevant parameters is driven by

user motion. Accuracy degradation happens if a certain axis has not been excited for long.

This is not the case for free motion equipment such as Unmanned Aerial Vehicles (UAV)

and handheld devices, whereas it is commonplace among constrained motion equipment

like car navigators. More constraints should be added. In response, we implemented Zero

Motion Update (ZUPT), Heading Measurement Constraint (HMC), and Non-Holonomic

Constraint (NHC) to constrain some of the possible scenarios. These constraints will be

introduced in subsection 3.6.2, subsection 3.6.3, and subsection 3.6.4, respectively.

3.6.1 Pre-integration Factors

The measurements of angular velocity and acceleration from the raw gyroscope and ac-

celerometer are defined as

ω̂k = ωk + bg,k − εg,k (3.96)

âk = ak +RB
W

Wg + ba,k − εa,k (3.97)
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where ω̂k and âk are the raw IMU measurements at epoch k in B frame. bg,k, ba,k are

the biases of the accelerometer and gyroscope, which are commonly modeled as random

walks. εg,k and εa,k are random noises, which are commonly modeled as white noises.

The relevant estimated parameters are

χk :=
î
WpT

k , q
W
B,k

T
,WvT

k , ba,k, bg,k
óT

(3.98)

Ignoring the effects of the Earth rotation, the INS mechanics could be written as

W ṗ = Wv
W v̇ = RW

B (â− ba + εa)− Wg

q̇W
B =

1

2
qW
B ⊗ exp

Ñ ω̂ − bg + εg

0

é
ḃa = εa

ḃg = εg

(3.99)

We can find that the derivatives of position W ṙ, velocity W v̇, and quaternion q̇W
B

depend on the estimated parameters Wv, qW
B , ba, and bg. The motion parameters Wv

and qW
B are frequently updated with comparatively large amounts because of iteration.

We must recompute the entire integration between two epochs k and k+1 whenever there

is a change. To overcome this, we transfer the integration from W frame to Bk, the body

frame at epoch k. Then the mechanics become

Bk ṗ = Bkv
Bk v̇ = RBk

B (âk − ba,k + εa,k)− Wg

q̇Bk
B =

1

2
qBk
B ⊗ exp

Ñ ω̂k − bg,k + εg,k

0

é
ḃa,k = εa,k

ḃg,k = εg,k

(3.100)

For convenience, we use x to represent body frame Bx if it is written at the position

of frames. Note that the position, velocity, and quaternion in Bk frame, i.e. kp and kv,

and qk
B, are actually incremental variables, we rewrite them as delta values δpk

B, δv
k
B, and
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δqk
B. Then we discretize the equations

δp̂k
k+1 =

k+1∑
i=k

(
k+1∑
i=k

Ä
R

k

i (ai − ba,k + εa,k) δt
ä
δt

)

δv̂k
k+1 =

k+1∑
i=k

Ä
R

k

i (ai − ba,k + εa,k) δt
ä

δq̂k
k+1 =

k+1∏
i=k

ÑÑ ωi − bg,k + εg,k

0

é δt

é (3.101)

where δt is the time interval between i and i+1. Overline xi means an approximate de-

scribing the discrete value between i and i+1, which depends on the numerical integration

methods. We use the first-order (midpoint) method and hence xi = (xi + xi+1)/2.

Now the pre-integrated measurements δp̂k
i , δv̂

k
i , and δθ̂k

i are independent from the

estimated parameters Wv and qW
B . Note that they still depend on the bias parameters,

which also change during iteration. But the amplitude is small so we can use the first-order

approximation to update the measurements when they have changed. We will discuss it

later.

Given a batch of IMU measurements ai and ωi between two epochs i ⊆ [k, k + 1], we

can compute Equation 3.101 recursively by

δp̂k
i+1 = δp̂k

i + δv̂k
i δt+

1

2
R

k

i (ai − ba,k + εa,k) δt
2

δv̂k
i+1 = δv̂k

i +R
k

i (ai − ba,k + εa,k) δt

δq̂k
i+1 = δq̂k

i ⊗
1

2
exp

Ñ ωi − bg,k + εg,k

0

 δt

é (3.102)

Now we discuss the covariance propagation. We linearize Equation 3.100 to get the
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ẋ = Fx+Gε form

˙δpk

˙δvk

˙δθk

δ̇ba,k

δ̇bg,k


=



0 I 0 0 0

0 0 −⌊Rk (â− ba)×⌋ −Rk 0

0 0 −⌊(ω̂ − bg)×⌋ 0 −Rk

0 0 0 0 0

0 0 0 0 0





δpk

δvk

δθk

δba,k

δbg,k



+



0 0 0 0

Rk 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I




εa,k

εg,k

εba,k

εbg ,k



(3.103)

We discretize the above continuous equation by first-order approximation, i.e. exp(F δt) =

I + F δt. Then we can get a recursive equation to update the covariance

P k
i+1 = (I + Fiδt)

(
P k

i +GiQiG
T
i

)
(I + Fiδt)

T (3.104)

where Qi is the covariance of εi.

The covariance matrix is computed recursively during integration and the final result

P k
k+1 will be used as measurement covariance when add the pre-integration measurement

into the graph.

As mentioned before, the pre-integration measurements are still dependent on the bias

parameters. If the biases have been updated, the pre-integration measurements should

be updated correspondingly via

δp̂k ′

k+1 ≈ δp̂k
k+1 + Jp

ba
δba,k + Jp

bg
δbg,k

δv̂k ′

k+1 ≈ δv̂k
k+1 + Jv

baδba,k + Jv
bgδbg,k

δq̂k ′

k+1 ≈ δq̂k
k+1 ⊗

1

2
exp

Ñ J θ
bg
δbg,k

0

é (3.105)

where Ja
b is the Jacobian matrix of a over b.
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A straightforward method to compute the above Jacobians is to apply the recursive

equation Φk
i+1 = (I + Fi)Φ

k
i to get Φk

k+1. Then the Jacobians can be gotten from the

corresponding matrix blocks. However, to alleviate the computational load, we follow

[10] to compute the Jacobians in a more analytical way. Taking partial derivation of

Equation 3.101, the Jacobians can be computed as

J θ
bg ,k = −

k+1∑
i=k

Ä
Rk+1

i

T
Jr,iδt

ä
Jv
bg ,k = −

k+1∑
i=k

Ä
R

k

i ⌊(ai − ba,k)×⌋J θ
bg ,iδt
ä

Jp
bg ,k

= −
k+1∑
i=k

(
k+1∑
i=k

Ä
R

k

i ⌊(ai − ba,k)×⌋J θ
bg ,iδt
ä
δt

)

Jv
ba,k = −

k+1∑
i=k

Ä
R

k

i δt
ä

Jp
ba,k

= −
k+1∑
i=k

(
k+1∑
i=k

Ä
R

k

i δt
ä
δt

)

(3.106)

where Jr,i = Jr (ωi − bg,k), Jr(·) is the right Jacobian of SO(3),

Jr(θ) = I − 1− cos(∥θ∥)
∥θ∥2

⌊θ×⌋+ ∥θ∥ − sin(∥θ∥)
∥θ3∥

⌊θ×⌋2 (3.107)
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Now we get the pre-integrated measurements. The residual can be written as

rk
I,k+1 :=



δp̂k
k+1

δv̂k
k+1

δq̂k
k+1

0

0


⊟



RW
k

T
Ä
Wpk+1 − Wpk − Wvkδt+

1
2
Wgδt2 − Jp

ba
δba,k − Jp

bg
δbg,k
ä

RW
k

T
Ä
Wvk+1 − Wvk +

Wgδt− Jv
ba
δba,k − Jv

bg
δbg,k
ä

qW
k

−1 ⊗ qW
k+1 ⊗ 1

2
exp

Ñ J θ
bg
δbg,k

0

é−1

ba,k+1 − ba,k

bg,k+1 − bg,k



(3.108)

The Jacobian matrix over the parameters at epoch k is

Jk :=



RW
k

T
RW

k
T
δt Jp

θ,k Jp
ba,k

Jp
bg ,k

0 RW
k

T
Jv
θ,k Jv

ba,k
Jv
bg ,k

0 0 J θ
θ,k 0 J θ

bg ,k

′

0 0 0 I 0

0 0 0 0 I


(3.109)

with

Jp
θ,k = ⌊RW

k

T
Å

Wpk+1 − Wpk − Wvkδt+
1

2
Wgδt2

ã
×⌋

Jv
θ,k = ⌊RW

k

T (Wvk+1 − Wvk +
Wgδt

)
×⌋

J θ
θ,k =

Ä
Q+
Ä
δq̂k

k+1 ⊗ qW
k+1

−1
ä
Q− (qW

k

)ä
3×3

J θ
bg ,k

′
=
Ä
Q+

(
δq̂k

k+1

)
Q−
Ä
qW
k+1

−1 ⊗ qW
k

ää
3×3

J θ
bg ,k

(3.110)

where the subscript 3× 3 represents the corresponding matrix block at the top left.
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The Jacobian matrix over the parameters at epoch k + 1 is

Jk+1 :=



−RW
k

T
0 0 0 0

0 −RW
k

T
0 0 0

0 0 −J θ
θ,k+1 0 0

0 0 0 −I 0

0 0 0 0 −I


(3.111)

with

J θ
θ,k+1 = −

Ä
Q+
Ä
δq̂k

k+1 ⊗ qW
k+1

−1
ä
Q− (qW

k

)ä
3×3

(3.112)

3.6.2 Zero Motion Update Factor

The ZUPT detects user static motion and adds a pseudo-measurement to constrain the

zero motion.

There are several ways to detect static motions. A straightforward way is to examine

a window of IMU measurements, if there is no acceleration or angular velocity larger than

a threshold, we think we are under a static motion. In the multi-sensor fusion system,

we can further use the information from the other sensors to make the judgment more

reliable. For example, we can use GNSS velocity and position and camera feature disparity

to examine the motion. In GICI, we only used the IMU measurement examination for

static motion detection.

Once a static motion is detected, the ZUPT constraint can be added by a pseudo-

measurement

rk :=
Wvk (3.113)

Hence, the related parameters are

χk :=
[
Wvk

]T
(3.114)

The Jacobian matrix is

Jk := I (3.115)

The covariance matrix is a diagonal matrix with comparably small variance values.
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3.6.3 Heading Measurement Constraint Factor

If there is a heading measurement, it can be constrained to the estimator to improve

the accuracy and stability of the yaw estimation. For the GICI system, the heading

can be gotten from a dual-antenna GNSS measurement or computed from GNSS velocity.

Currently, we do not support dual-antenna GNSS. For the GNSS velocity-derived heading

measurement, we set an option to enable it, i.e. ”car motion”. Note that computing

heading angle from GNSS velocity just valid on the fix-direction-movement vehicles, such

as cars and fixed-wing aircraft. We just implemented the HMC for car motion. Rather

than using the GNSS velocity to compute the heading, we use the estimated velocity,

which makes the constraint more tight.

The HMC residual can be computed as

rk :=
[
0 0 1 0

]
· 2 log

(
q̂W−1
k ⊗ qW

k

)
(3.116)

with

q̂W
k = exp

Ñ
1
2
θ

0

é
(3.117)

where θ = [0, 0, θz], θz is the heading measurement.

with

θz = arctan

ÅWvx,k
Wvy,k

ã
(3.118)

Hence, the related parameters are

χk :=
[
qW
k ,Wvk

]T
(3.119)

The Jacobian matrix is

Jk :=
[
J θz
θ J θz

v

]
(3.120)

with

J θz
θ =

[
0 0 1 0

]
·Q+

(
2 log

(
q̂W−1
k ⊗ qW

k

))
(3.121)

J θz
v =

1»
Wv2x,k +

Wv2y,k

[
−Wvy,k

Wvx,k 0

]
(3.122)
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The covariance matrix is a scalar value, which is given by

σ2
H = σ2

h + σ2
a (3.123)

where σh is the STD of heading measurement error. σa is the STD of installation angle

error.

3.6.4 Non-holonomic Constraint Factor

The NHC assumes that the vehicle moves along one body axis and the velocity on the

other two body axes are zeros. This feature is also configured by the ”car motion” option

in GICI.

By assuming that the motion is along the y-axis, the NHC residual can be written as

rk := JlR
W
k

TWvk (3.124)

with

Jl =

 1 0 0

0 0 1

 (3.125)

Hence, the related parameters are

χk :=
[
qW
k ,Wvk

]T
(3.126)

The Jacobian matrix is

Jk := Jl

[
RW

k
T ⌊Wvk×⌋ RW

k
T
]

(3.127)

The covariance matrix is a 2-dimensional diagonal matrix. Each element is given as

σ2
N = σ2

a (3.128)

where σa is the STD of installation angle error.
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3.7 Common Factors

3.7.1 Parameter Error Factors

The parameter error factor constrains the parameter values directly. It is often used

to give an initial guess of a parameter, such as the initial GNSS ambiguity, ionosphere

delay, extrinsic, etc, or an external constraint from outer solvers, such as the fixed GNSS

ambiguities.

For an estimated parameter χk, the parameter error residual is defined as

rk := χ̂k − χk (3.129)

The Jacobian matrix is

Jk := I (3.130)

The covariance matrix is set according to the covariance of the confidence of the initial

guess.

3.7.2 Relative Constant Error Factors

The relative constant error factor constrains the parameter values between epochs. It is

used to connect the non-INS-propagated parameters between epochs, such as the GNSS

ambiguity, ionosphere delay, etc.

For an estimated parameter at two epochs χk and χk+1, the relative const error

residual is defined as

rk := χk+1 − χk (3.131)

The Jacobian matrix is

Jk :=
[
−I I

]
(3.132)

The covariance matrix is a diagonal matrix with the dimension of the number of

parameters. For each diagonal element, the variance is computed by

σδ = q2δt (3.133)

where q is the Power Spectral Density (PSD) of the corresponding parameter. δt is

the time step between the two epochs.
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3.7.3 Relative Integral Error Factors

The relative integral factor constrains the integral parameters values between epochs. It

is used to connect the non-INS-propagated integral parameters between epochs, such as

the position-velocity pair, clock-frequency pair, etc.

Taking the velocity and position model as an example. For estimated parameters at

two epochs pk, vk, pk+1, and vk+1, the relative integral error residual is defined as

rk :=

 pk+1 − pk − vkδt

vk+1 − vk

 (3.134)

The Jacobian matrix is

Jk :=

 −I I −Iδt 0

0 0 −I I

 (3.135)

The covariance matrix is

Qk :=

 1
3
Iqvδt

3 1
2
Iqvδt

2

1
2
Iqvδt

2 Iqvδt

 (3.136)

3.8 GNSS Estimators

3.8.1 Single Point Positioning

The SPP algorithm utilizes one epoch ZD pseudorange and doppler measurements to solve

the receiver position, velocity, and clock. The graph structure is shown in Figure 3.5.

Figure 3.5: FGO structure of GNSS SPP.
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In total, the estimated parameters are

χk :=
[
WGpT

k ,
WGvT

k , dtr,k, dfr,k

]T
(3.137)

where the boldsymbols dtr,k and dfr,k means that we estimate clocks and frequencies

for each satellite systems.

There are two typical SPP algorithms: single frequency SPP and ionosphere combina-

tion SPP. We implemented the former one in GICI. The absent of multi-frequency SPP

is because one have to further estimate the IFB items (see subsection 3.4.1) and hence

multi-frequency cannot bring comparably better performance for SPP.

The edges in the graph contain multiple residuals of pseudorange and doppler mea-

surements, which correspond to formulation 1 in subsection 3.4.1 and formulation 1 in

subsection 3.4.3.

3.8.2 Real-Time Differential

The RTD algorithm utilizes one epoch DD pseudornage and ZD doppler measurements

to solve the receiver position and velocity. The graph structure is the same as Figure 3.5.

In total, the estimated parameters are

χk :=
[
WGpT

k ,
WGvT

k , dfr,k

]T
(3.138)

Unlike SPP, the multi-frequency measurements can be used in RTD because the IFB

items are eliminated by the DD operation. So users can use any number of frequencies to

run RTD by controlling the input stream of GICI estimator node.

The edges contain DD pseudorange and ZD doppler measurements, which correspond

to formulation 9 in subsection 3.4.1 and formulation 1 in subsection 3.4.3.

3.8.3 Real-Time Kinematic

The RTK algorithm utilizes multi-epoch DD pseudorange, ZD doppler, and DD carrier

phase measurements to solve the receiver position and velocity. The graph structure is

shown in Figure 3.6.

In total, the estimated parameters are

χk :=
[
WGpT

k ,
WGvT

k , dfr,k,N
s
rrb,i,k

]T
(3.139)
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Figure 3.6: FGO structure of GNSS RTK.

where N s
rrb,i,k

is a vector of SD ambiguities N s
rrb,i,k

. If there are n matched satellites

between the rover and base receivers, and m matched frequencies for each satellite, there

will be m× n SD ambiguities N s
rrb,i,k

should be estimated.

Now we illustrate the edges defined in the graph.

For the receiver edge, the containers are:

1) DD pseudorange measurements that correspond to formulation 9 in subsection 3.4.1.

2) DD carrier phase measurements that correspond to formulation 9 in subsection 3.4.2.

3) ZD doppler measurements that correspond to formulation 1 in subsection 3.4.3.

4) Initial ambiguity guesses that correspond to subsection 3.7.1.

5) Fixed ambiguity constraints that correspond to subsection 3.7.1.

For the epoch inter-connection edge, the containers are:

1) Relative position and velocity error that corresponds to subsection 3.7.3.

2) Relative clock frequency errors that correspond to subsection 3.7.2.

3) Relative ambiguity errors that correspond to subsection 3.7.2.

For the marginalization edge, the corresponding residuals and Jacobians are defined

in subsection 3.1.2.

Despiting the FGO, there is also an extra process for RTK: Ambiguity Resolution

(AR). AR is a major procedure for high-precision GNSS algorithms to achieve centimeter-

level solutions.

The AR starts with the estimated float ambiguitiesN s
rrb,i,k

and their covariance matrix

PNSD
. A Between-Satellite-Difference (BSD) is first applied by selecting base satellites

for each satellite constellation to eliminate the receiver phase biases br,i absorbed by float

ambiguities during estimation. Herein we get the DD ambiguities N ssb
rrb,i,k

and covariance
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matrix PNDD
. For convenience, we represent the DD ambiguities and their covariance as

N and P . Then the problem becomes solving an integer LSQ problem

N̂ = argmin
N̂

∥N̂ −N∥2P (3.140)

where N̂ is the integer ambiguities to be solved.

The problem can be solved by two steps: decorrelation and search. We use the

MLAMBDA [11] algorithm to conduct the resolution. After the integer ambiguities have

been solved, they will be constrained to FGO using the parameters error factors with low

variances.

To further improve the fixation rate and reliability, we use partial ambiguity resolution

and (ultra-) wide-lane combination technologies.

The wide-line combination is shown in section B.1. This combination can widen the

wavelength of the measurements from the raw wavelength ∼ 0.2 m to about 0.7 ∼ 6

m. The wider the wavelength, the lower the noise amplitude mapped on the cycle of the

ambiguity parameters, and hence the easier the integer ambiguity can be solved. In GICI,

we define the wide-lane ambiguity as the combined ambiguities with the wavelength within

0.3 ∼ 2 m, the ultra-wide-lane as > 2 m, and the narrow-lane as < 0.3 m. Combining the

ambiguities with similar frequencies yields ultra-wide-lane ambiguities, such as combining

GPS L2 (1227.6 MHz) and L5 (1176.45 MHz) yields∼ 5 m wavelength. And combining the

ambiguities with farther frequencies yields wide-lane ambiguities, such as combining GPS

L1 (1572.42 MHz) and L2 yields ∼ 0.8 m wavelength. Before applying the MLAMBDA

algorithm, we combine the ambiguities according to the frequencies of candidates. After

that, we prioritize solving the ultra-wide-lane ambiguities, then the wide-lane ambiguities,

and finally the narrow-lane ambiguities. Every time when a batch of ultra-wide-lane

or wide-lane ambiguities is solved, their integer value will be constrained into the float

ambiguities can their covariance matrix by a Kalman update

N
′
= N +KN

Ä
N̂ − JNN

ä
(3.141)

P
′
= (I −KNJN)P (3.142)

with

KN = PJT
(
JNPJT + PN̂

)−1
(3.143)

where JN is the Jacobian matrix that contains the combination coefficients. PN̂ is the

covariance of the fixed ambiguities, which is a diagonal matrix with the diagonal element

set as a very small value (0.001 cycles in default).
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After the final narrow-lane ambiguities are solved, we try to add the ambiguity con-

straints into the graph. If we find that the total cost decreases, we think the solution has

better optimality, and we adopt this ambiguity resolution. Or we will reject the current

resolution and remain with the float solution.

For each lane type, the partial ambiguity resolution strategy is applied. The partial

ambiguity resolution strategy is to solve a subset of integer ambiguities, instead of the

whole. This is more practical because some of the float ambiguities may be affected by

errors and probability cannot be solved. We first arrange the float ambiguities accord-

ing to the satellite elevation, parameter variance, and amplitude of the fractional part,

respectively. Then we try to solve the subset of ambiguities for each sequence by erasing

the ambiguity at the back recursively until the integer ambiguity is solved or we reach

the minimum percentage limit.

3.8.4 Precise Point Positioning

The PPP algorithm utilizes multi-epoch ZD pseudorange, ZD doppler, and ZD carrier

phase measurements to solve the receiver position, velocity, clock, and atmospheric delays.

The graph structure is the same as Figure 3.6.

Note that there are two typical PPP algorithms: ionosphere-free PPP and undiffer-

enced and uncombined PPP. The performance of the two algorithms is similar. We choose

to use the latter one because it is more flexible to handle multi-frequency measurements.

In total, the estimated parameters are

χk :=
[
WGpT

k ,
WGvT

k , dtr,k, dfr,k,N
s
r,i,k, TZ,w,k, I

s
r,1,k,dr,IFBi

]T
(3.144)

where dtr,k and dfr,k are vectors of receiver clocks and frequencies dtr,k and dfr,k. N
s
r,i,k

is a vector of ZD ambiguities N s
r,i,k. I

s
r,1,k is a vector of ionosphere delays Isr,1,k. dr,IFBi

is

a vector of inter-frequency biases dr,IFBi
. If there are nS satellite systems, containing n

satellites, and for each satellite, there are m frequencies. There will be nS receiver clocks

and frequencies dtr,k and dfr,k, m×n ZD ambiguities N s
r,i,k, n ionosphere delays Isr,1,k, and

nS(m− 2) inter-frequency biases dr,IFBi
should be estimated.

Now we illustrate the edges defined in the graph.

For the receiver edge, the containers are:

1) ZD pseudorange measurements that correspond to formulation 2 in subsection 3.4.1.

2) ZD carrier phase measurements that correspond to formulation 2 in subsection 3.4.2.
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3) ZD doppler measurements that correspond to formulation 1 in subsection 3.4.3.

4) Initial ambiguity guesses that correspond to subsection 3.7.1.

5) Initial troposphere wet delay that correspond to subsection 3.7.1.

6) Initial ionosphere delay that correspond to subsection 3.7.1.

7) Initial IFB that correspond to subsection 3.7.1.

8)∗ Fixed ambiguity constraints that correspond to subsection 3.7.1. This is an extra

constraint for PPP with Ambiguity Resolution (PPP-AR)

9)∗ Troposphere wet delay correction that correspond to subsection 3.7.1. This is an extra

constraint for PPP with reference network corrections (PPP-RTK)

10)∗ Ionosphere delay correction that correspond to subsection 3.7.1. This is an extra

constraint for PPP-RTK.

where ∗ means we do not support the corresponding features currently because there

are no stable standard open services for these corrections yet.

For the epoch inter-connection edge, the containers are:

1) Relative position and velocity error that corresponds to subsection 3.7.3.

2) Relative clock and frequency error that corresponds to subsection 3.7.3.

3) Relative ambiguity errors that correspond to subsection 3.7.2.

4) Relative troposphere wet delay error that corresponds to subsection 3.7.2.

5) Relative ionosphere delay errors that correspond to subsection 3.7.2.

For the marginalization edge, the corresponding residuals and Jacobians are defined

in subsection 3.1.2.

We implemented the PPP-AR. But this feature has not been fully tested. To conduct

the PPP-AR, one must access a satellite phase bias service and correct it. Then, by

extracting the ZD float ambiguities from the PPP estimator, one should first apply BSD

to eliminate the receiver phase biases and the unobservable part of the satellite phase

biases. Then almost the same AR algorithm as RTK can be applied to solve integer

ambiguities and constrain them back into the PPP estimator. The difference is that

the PPP float ambiguities absorb more noise and hence the strategy should be slightly

modified to ensure reliable and fast AR. Here we will not elaborate further.
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3.8.5 Global Frame Initialization

As described above, we conduct the GNSS-only estimators in the ECEF global frame.

However, we realize multi-sensor fusion algorithms in the ENU. frame. Hence, global-to-

local frame conversions should be applied frequently and the datum should be defined

initially.

The global frame initialization defines a reference point to convert states from ECEF

global frame to ENU local frame. The reference point is also used to compute the lo-

cal gravity, which is used by INS mechanics. There are two ways to set the reference

point: 1) We run an SPP estimator and set the reference point as the first valid solution

of the estimator. 2) We load the point coordinate from the configuration file via the

”initial global position” option if the ”force initial global position” option is set as true.

3.9 GNSS/INS Integrated Estimators

3.9.1 Loosely Integration

The LC estimator utilizes solution from GNSS (position and velocity), and raw measure-

ments from INS (acceleration and angular velocity), for estimation. The FGO structure

of the GNSS/INS LC estimator is shown in Figure 3.7.

Figure 3.7: FGO structure of GNSS/INS estimator.

In total, the estimated parameters are

χk := [χI,k,χr]
T (3.145)

with

χI,k :=
î
WpT

k , q
W
B,k

T
,WvT

k , ba,k, bg,k
óT

(3.146)

χr :=
[
BtTr
]T

(3.147)
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The GNSS receiver edge contains:

1) GNSS position error that corresponds to the INS-centered local frame formulation in

subsection 3.3.1.

2) GNSS velocity error that corresponds to the INS-centered local frame formulation in

subsection 3.3.2.

3) Initial GNSS extrinsic error that corresponds to subsection 3.7.1.

The IMU inter-connect edge contains the INS pre-integration error that corresponds

to subsection 3.6.1.

There are also some optional constraints applied on the INS parameters χI,k, contain-

ing:

1) ZUPT error in subsection 3.6.2.

2) HMC error in subsection 3.6.3. (Only for car motion.)

3) NHC error in subsection 3.6.4. (Only for car motion.)

3.9.2 Tightly Integration

The TC estimator utilizes GNSS raw measurements from GNSS (pseudorange, carrier

phase, and doppler), and raw measurements from INS (acceleration and angular velocity),

for estimation. The FGO structure of the GNSS/INS TC estimator is shown in Figure 3.8.

Figure 3.8: FGO structure of GNSS/INS estimator.

In total, the estimated parameters are

χk := [χI,k,χr,k]
T (3.148)

with

χr,k =
[
BtTr , χ̃r,k

]T
(3.149)
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where χ̃r,k varies according to the formulations utilized.

The definitions of mutable parameters χ̃r,k (nodes) and the corresponding GNSS resid-

uals (edges) can be found at subsection 3.8.1 ∼ subsection 3.8.4, except that an initial

GNSS extrinsic error that corresponds to subsection 3.7.1 should be added.

The IMU nodes and corresponding edges are the same as subsection 3.9.1.

3.9.3 Initialization

The GNSS/INS initializer estimates initial poses, velocities, and biases for LC or TC esti-

mators. Regardless of whether we use LC or TC integrations, we use the LC formulations,

i.e. position and velocity, to form the initialization optimization graph for efficiency.

The pitch and roll angle is first computed by the acceleration measure. Then a batch

optimization is conducted when a sufficient acceleration is detected. The optimization

structure is mostly the same as GINS LC optimization. The difference is that we do not

trust the position measurements during initialization because they exhibit large noise if

the integer values of GNSS ambiguities are unsolved, which often leads to divergence.

Instead, we use the velocity measurement to compute the increment of initial position

parameters because we believe the GNSS doppler measurement (which mainly contributes

to the velocity estimation) is precise and less affected by errors.

3.10 GNSS/INS/Camera Integrated Estimators

3.10.1 Solution/Raw/Raw Integration

The SRR estimator utilizes solution from GNSS (position and velocity), raw measure-

ments from INS (acceleration and angular velocity), and raw measurements from visual

(features), for estimation. The FGO structure of the GNSS/INS/Camera SRR estimator

is shown in Figure 3.9.

In total, the estimated parameters are

χk := [χI,k,χr,χc]
T (3.150)

where χI,k and χr are the same as subsection 3.9.1. χc,k is the visual parameters,

which is given as

χc :=
[
Btc, q

B
C ,

Wpl

]T
(3.151)
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Figure 3.9: FGO structure of GNSS/INS estimator.

where Btc and qB
C are the camera extrinsics. Wpl is a vector of landmark positions

Wpl.

The definitions of the GNSS and IMU edges are the same as subsection 3.9.1.

The camera edge contains:

1) Reprojection error in subsection 3.5.2.

2) Initial camera extrinsic error that corresponds to subsection 3.7.1.

There is no interconnection between camera states because the corresponding pa-

rameters are time-invariant. We keep the connection on the graph to indicate that the

estimated parameters of epochs vary because of switching tracked landmarks.

3.10.2 Raw/Raw/Raw Integration

The RRR estimator utilizes raw measurements from GNSS (pseudorange, carrier phase,

and doppler), raw measurements from INS (acceleration and angular velocity), and raw

measurements from visual (features), for estimation. The FGO structure of the GNSS/IN-

S/Camera RRR estimator is shown in Figure 3.10.

In total, the estimated parameters are

χk := [χI,k,χr,k,χc]
T (3.152)

The definition of χI,k, χr,k, and the corresponding edges are the same as subsec-

tion 3.9.2. The definition of χc and the corresponding edges is the same as subsec-
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Figure 3.10: FGO structure of GNSS/INS estimator.

tion 3.10.1.

3.10.3 Initialization

The GNSS/INS/Camera initializer estimates initial poses, velocities, biases, and landmark

positions for SRR or RRR estimators. The initialization is done in two steps: GNSS/INS

initialization step and visual initialization step. The GNSS/INS initialization step has

been introduced in subsection 3.9.3. After the GNSS/INS initialization, we triangulate

the tracked features using the estimated poses.

3.10.4 GNSS measurement sparsification

It is widely agreed upon that vision-based estimation algorithms employ keyframes for

sparsification to save the computational load. A similar strategy should be developed

for high-precision TC GNSS formulations because the dimension of the corresponding

parameters is also high.

The principle of selecting keyframes in visual estimation is to try to skip the frames

with similar scenes, which contributes less to the estimator and causes a meaningless

decrease in the covariance of the estimated parameters. The essence of this principle is

that the correlation between unmodeled errors in adjacent frames is high, which makes

it incorrect to model the errors as white noise. Sparsifying the frames whitens the error

and makes it fit the basic assumption of FGO better.

This property is also evident in GNSS raw measurements. For high-precision GNSS
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Figure 3.11: Auto-correlation of a satellite in different vehicle motion (left) and the effect

of sparsification on covariance estimation (right). The right plot is a simulation of a single

parameter estimation problem with a first-order Gauss–Markov error. The correlation

time of the error is τ and the sparsification time step is 2τ .

formulations, the auto-correlation property of the unmodeled errors is mainly caused by

the multipath, and the correlation time is dependent on the change rate of the scene. The

GNSS measurement auto-correlation and the effect of sparsification are shown in Figure

3.11. We can see that the correlation time changes according to the motion, and the effect

of correlation on the estimator can be mitigated by sparsification.

Due to the correlation time of GNSS measurement changing over time, a consistent

time step for sparsification is difficult to determine. Luckily, scene change rate behaves

similarly to the criteria for keyframe selection. Therefore, our GNSS sparsification strat-

egy is designed as keeping measurements near keyframes and disregarding the rest.
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Appendix A

Notations and Definitions

A.1 Frames

Denote AF the reference frame A, we define some commonly used frames:

WF The East-North-Up (ENU) world frame. The origin is the first estimated GNSS

position or the value of configuration ”initial global position”.
WGF The Earth-Centered Earth-Fixed (ECEF) world frame. Since the Latitude-Longitude-

Height (LLA) world frame can be converted to the ECEF frame with a fixed model,

we do not distinguish these two frames in this manual.
BF Body frame defined in Right-Forward-Up sequence.
rF GNSS receiver frame, rotateless.
IF IMU sensor frame.
CF Camera sensor frame.

A.2 Transformations

The followings are some definitions of commonly used transformation:

PTQ The transformation matrix that transforms a homogeneous point from QF to PF .

RP
Q The rotation matrix that rotates a point from QF to PF .

qP
Q The quaternion that describes the rotation RP

Q.
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QtP The translation of the origin point of PF in QF frame. If the translation item is

defined at the origin point of the body frame, i.e. QtB, we write this translation as
Qt for simplicity.

A.3 Rotation Definitions

Define the quaternion

q :=
[
qT
v qw

]T
=
[
qx qy qz qw

]T
(A.1)

The multiplication matrix is defined as

q1 ⊗ q2 = Q+
1 q2 = Q−

2 q1 (A.2)

with

Q+ := qwI +

 ⌊qv×⌋ qv

−qT
v 0

 , Q− := −qwI +

 ⌊qv×⌋ qv

−qT
v 0

 (A.3)

and

⌊qv×⌋ :=


0 −qz qy

qz 0 −qx

−qy qx 0

 (A.4)

We estimate the quaternion of the body in the world frame qWB , and the disturbance

is defined on the left side, i.e.

RW
B ⊞ δR := exp (⌊δθ×⌋)RW

B (A.5)

and

qW
B ⊞ δq := δq ⊗ qW

B (A.6)

with

δq := exp

Ñ 1
2
δθ

0

é (A.7)
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The quaternion exponential is computed as

exp

Ñ 1
2
δθ

0

é =

 sinc
∥∥δθ

2

∥∥ δθ
2

cos
∥∥δθ

2

∥∥2
 (A.8)

Correspondingly, the quaternion logarithmic is defined as

log (δq) :=

 1
2
δθ

0

 (A.9)

The rotation angle exponential is computed as

exp (⌊θ×⌋) = I +
sin (∥θ∥)

∥θ∥
⌊θ×⌋+ 1− cos (∥θ∥)

∥θ∥2
⌊θ×⌋2 = R (A.10)

For convenience, we define the Exp operation to directly convert the rotation vector

to the rotation matrix

Exp (θ) := R (A.11)

Correspondingly,

Log (R) := θ (A.12)

We use the quaternion q for parameterization and θ for error computation. So there

will be an q update every time when a new θ is computed. The update is given by

Equation A.6. The corresponding Jacobian matrix is

J θ
q := 2Q− (q−1

)
3×4

(A.13)

where the subscript 3× 4 represents the corresponding matrix block at the top left.
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Appendix B

GNSS Linear Combinations

To simplify, we use the notation G to represent the pseudorange P and phase-range L in

this chapter.

B.1 Combination

1. Ionosphere-Free (IF) combination.

It uses the measurements from two frequencies to form a (first-order-) ionosphere-

delay-independent measurement. It can eliminate most of the ionosphere effect.

GIF :=
f 2
i

f 2
i − f 2

j

Gi −
f 2
j

f 2
i − f 2

j

Gj (B.1)

2. Geometric-Free (GF) combination.

It cancels the geometric part of the measurement, leaving all the frequency-dependent

effects besides multipath and random noise.

GGF := Gi −Gj (B.2)

3. Wide-lane (WL) combination.

It is used to create a signal with a significantly wide wavelength.
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GWL :=
fi

fi − fj
Gi −

fj
fi − fj

Gj (B.3)

4. Narrow-lane (NL) combination.

It is used to create a signal with a narrow wavelength.

GNL :=
fi

fi + fj
Gi +

fj
fi + fj

Gj (B.4)

B.2 Differential

1. Single-Difference (SD)

It make difference between the measurements from two GNSS receivers to eliminate

most of the satellite and propagation segment errors.

Gs
rrb,i

:= Gs
r,i −Gs

rb,i
(B.5)

2. Between-Satellite-Difference (BSD)

It make difference between the measurements from two GNSS receivers to eliminate

most of the receiver and propagation segment errors.

Gssb
r,i := Gs

r,i −Gsb
r,i (B.6)

3. Double-Difference (DD)

It combinates the SD and BSD to eliminate most of the errors.

Gssb
rrb,i

:= Gs
r,i −Gs

rb,i
− (Gsb

r,i −Gsb
rb,i

) (B.7)
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[7] Johannes Böhm et al. “Global Mapping Function (GMF): A new empirical mapping

function based on numerical weather model data”. In: Geophysical research letters

33.7 (2006).

[8] Deepak Geetha Viswanathan. “Features from accelerated segment test (fast)”. In:

Proceedings of the 10th workshop on image analysis for multimedia interactive ser-

vices, London, UK. 2009, pp. 6–8.

[9] Bruce D Lucas and Takeo Kanade. “An iterative image registration technique with

an application to stereo vision”. In: IJCAI’81: 7th international joint conference on

Artificial intelligence. Vol. 2. 1981, pp. 674–679.

[10] Christian Forster et al. “On-manifold preintegration for real-time visual–inertial

odometry”. In: IEEE Transactions on Robotics 33.1 (2016), pp. 1–21.

116

https://www.rtklib.com/rtklib.htm
https://www.rtklib.com/rtklib.htm
https://github.com/ceres-solver/ceres-solver


[11] X -W Chang, X Yang, and T Zhou. “MLAMBDA: A modified LAMBDA method

for integer least-squares estimation”. In: Journal of Geodesy 79 (2005), pp. 552–565.

117


	Contents
	Introduction
	Overview
	License
	Acknowledgement

	Instructions
	Installation
	Requirements
	Normal Build
	Build with ROS

	Configuration
	Structure of the Configuration File
	Stream Node
	Estimate Node
	Logging Node

	Typical Usage Scenarios
	Stream Transfer and Format Conversion
	Real-Time Estimation
	Offline Pseudo-Real-Time Estimation

	Hardware Configuration
	Stream Input and Data Format
	ROS Stream
	Hardware Time Synchronization


	Theories
	Factor Graph Optimization
	Describing Least-Squares Problem in Factor Graph
	Marginalization

	FGO structure in GICI
	Graph Structure
	Wrapping

	GNSS Loose Integration Error Factors
	Position Error Factor
	Velocity Error Factor

	GNSS Tight Integration Error Factors
	Pseudorange Error Factors
	Carrier Phase Error Factors
	Doppler Error Factors

	Camera Error Factors
	Feature Detection and Tracking
	Reprojection Error Factor

	INS Error Factors
	Pre-integration Factors
	Zero Motion Update Factor
	Heading Measurement Constraint Factor
	Non-holonomic Constraint Factor

	Common Factors
	Parameter Error Factors
	Relative Constant Error Factors
	Relative Integral Error Factors

	GNSS Estimators
	Single Point Positioning
	Real-Time Differential
	Real-Time Kinematic
	Precise Point Positioning
	Global Frame Initialization

	GNSS/INS Integrated Estimators
	Loosely Integration
	Tightly Integration
	Initialization

	GNSS/INS/Camera Integrated Estimators
	Solution/Raw/Raw Integration
	Raw/Raw/Raw Integration
	Initialization
	GNSS measurement sparsification


	Appendices
	Notations and Definitions
	Frames
	Transformations
	Rotation Definitions

	GNSS Linear Combinations
	Combination
	Differential

	References

