Callable object computing The Dirichlet \( \displaystyle \eta(z) = \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\).
Defined in Header
#include <eve/module/complex.hpp>
{
template< like<complex> T >
}
constexpr callable_eta_ eta
Callable object computing The Dirichlet .
Definition: eta.hpp:59
Definition: all_of.hpp:22
Parameters
Return value
Returns the Dirichlet sum \( \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\)
Real version
#include <eve/module/complex.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
wide_ft xf = { 3.0f, 2.0f, 1.0f, 0.5f};
std::cout
<< "---- simd" << std::endl
<< "<- z = " << xf << std::endl
<<
"-> eta(xf) = " <<
eve::eta(xf) << std::endl;
return 0;
}
Wrapper for SIMD registers.
Definition: wide.hpp:65
Complex version
#include <eve/module/complex.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
auto zc = eve::as_complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<<
"-> eta(zc) = " <<
eve::eta(zc)<< std::endl;
return 0;
}