|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{F}(x, y) = \mathbf{R}_\mathbf{D}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2} (t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\).
Defined in header
Parameters
x
, y
, z
: floating real arguments. All those arguments must be non-negative and at most one zero or the the result is NaN.Return value
the value of the \(\mathbf{R}_\mathbf{F}\) Carlson elliptic integral is returned: