|
constexpr ignore_all_ | ignore_all = {} |
| Object representing the eve::ignore_all_ conditional expression.
|
|
constexpr ignore_none_ | ignore_none = {} |
| Object representing the eve::ignore_none_ conditional expression.
|
|
constexpr callable_airy_ | airy = {} |
| Computes the airy functions values \( Ai(x)\) and \( Bi(x)\). More...
|
|
constexpr callable_airy_ai_ | airy_ai = {} |
| Computes the airy function \( Ai(x)\). More...
|
|
constexpr callable_airy_bi_ | airy_bi = {} |
| Computes the airy function \( Bi(x)\). More...
|
|
constexpr callable_cyl_bessel_i0_ | cyl_bessel_i0 = {} |
| Computes the modified Bessel function of the first kind, \( I_0(x)=\frac1{\pi}\int_{0}^{\pi}e^{x\cos\tau}\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_i1_ | cyl_bessel_i1 = {} |
| Computes the modified Bessel function of the first kind, \( I_1(x)=\frac1{\pi}\int_{0}^{\pi}e^{x\cos\tau}\cos\tau\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_in_ | cyl_bessel_in = {} |
| Computes the modified Bessel functions of the first kind, \( I_{n}(x)=\left(\frac12z\right)^n\sum_{k=0}^{\infty}{\frac{(x^2/4)^k}
{k!\,\Gamma (k+n +1)}}\). More...
|
|
constexpr callable_cyl_bessel_j0_ | cyl_bessel_j0 = {} |
| Computes the Bessel function of the first kind, \( J_0(x)=\frac1{\pi }\int _{0}^{\pi}\cos(x\sin \tau)
\,\mathrm {d} \tau \). More...
|
|
constexpr callable_cyl_bessel_j1_ | cyl_bessel_j1 = {} |
| Computes the Bessel function of the first kind, \( J_1(x)=\frac1{\pi }\int _{0}^{\pi}\cos(\tau-x\sin \tau )\,\mathrm {d} \tau \). More...
|
|
constexpr callable_cyl_bessel_jn_ | cyl_bessel_jn = {} |
| Computes the Bessel functions of the first kind, \( J_{n}(x)=\sum_{p=0}^{\infty}{\frac{(-1)^p}{p!\,\Gamma (p+n +1)}}
{\left({x \over 2}\right)}^{2p+n }\). More...
|
|
constexpr callable_cyl_bessel_k0_ | cyl_bessel_k0 = {} |
| Computes the modified Bessel function of the second kind, \( K_0(x)=\int_{0}^{\infty}\frac{\cos(x\tau)}
{\sqrt{\tau^2+1}}\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_k1_ | cyl_bessel_k1 = {} |
| Computes the modified Bessel function of the second kind, \( K_1(x)=\int_{0}^{\infty} e^{-x \cosh \tau} \cosh \tau\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_kn_ | cyl_bessel_kn = {} |
| Computes the modified Bessel function of the second kind, \( K_n(x)=\frac{\Gamma(n+1/2)(2x)^n}{\sqrt\pi} \int_{0}^{\infty}\frac{\cos\tau}
{(\tau^2+x^2)^{n+1/2}}\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_y0_ | cyl_bessel_y0 = {} |
| Computes the Bessel function of the second kind, \( Y_0(x)=\frac2{\pi}\int_{1}^{\infty}\frac{\cos x\tau}
{\sqrt{\tau^2-1}}\,\mathrm {d} \tau\). More...
|
|
constexpr callable_cyl_bessel_y1_ | cyl_bessel_y1 = {} |
| Computes the Bessel function of the second kind, \( Y_1(x)=\frac2{\pi}\int_{1}^{\infty}\frac{\cos x\tau}
{(\tau^2-1)^{3/2}}\,\mathrm{d}\tau\). More...
|
|
constexpr callable_cyl_bessel_yn_ | cyl_bessel_yn = {} |
| Computes the Bessel functions of the second kind, \( Y_{n}(x)=\frac{2(z/2)^{-n}}{\sqrt\pi\, \Gamma(1/2-n)}\int _{1}^{\infty}\frac{\cos x\tau}
{(\tau^2-1)^{n+1/2}}\,\mathrm {d} \tau \). More...
|
|
constexpr callable_sph_bessel_j0_ | sph_bessel_j0 = {} |
| Computes the spherical Bessel function of the first kind, \( j_{0}(x)= \sqrt{\frac\pi{2x}}J_{1/2}(x) \). More...
|
|
constexpr callable_sph_bessel_j1_ | sph_bessel_j1 = {} |
| Computes the spherical Bessel function of the first kind, \( j_{1}(x)= \sqrt{\frac\pi{2x}}J_{3/2}(x) \). More...
|
|
constexpr callable_sph_bessel_jn_ | sph_bessel_jn = {} |
| Computes the spherical Bessel functions of the first kind, \( j_{n}(x)= \sqrt{\frac\pi{2x}}J_{n+1/2}(x)\). More...
|
|
constexpr callable_sph_bessel_y0_ | sph_bessel_y0 = {} |
| Computes the spherical Bessel function of the second kind, \( y_{0}(x)= \sqrt{\frac\pi{2x}}Y_{1/2}(x) \). More...
|
|
constexpr callable_sph_bessel_y1_ | sph_bessel_y1 = {} |
| Computes the spherical Bessel function of the second kind, \( y_{1}(x)= \sqrt{\frac\pi{2x}}Y_{3/2}(x) \). More...
|
|
constexpr callable_sph_bessel_yn_ | sph_bessel_yn = {} |
| Computes the the spherical Bessel functions of the second kind, \( y_{n}(x)= \sqrt{\frac\pi{2x}}Y_{n+1/2}(x)\). More...
|
|
constexpr callable_bernouilli_ | bernouilli = {} |
| Computes the nth Bernouilli number \(b_n\) as a double. More...
|
|
constexpr callable_fibonacci_ | fibonacci = {} |
| Computes the nth element of the Fibonacci sequence \((f_i)_{i\in \mathbb{N}}\). More...
|
|
constexpr callable_gcd_ | gcd = {} |
| Computes the greatest common divisor of the inputs. More...
|
|
constexpr callable_lcm_ | lcm = {} |
| Computes the least common multiple of the inputs. More...
|
|
constexpr callable_nth_prime_ | nth_prime = {} |
| Returns the nth prime number. More...
|
|
constexpr callable_prime_ceil_ | prime_ceil = {} |
| Returns the smallest prime greater or equal to the input. More...
|
|
constexpr callable_prime_floor_ | prime_floor = {} |
| Returns the the greatest prime less or equal to the input. More...
|
|
constexpr callable_deta_ | deta = {} |
| Callable object computing \( \displaystyle \sum_0^\infty \frac{(-1)^n}{(kn+1)^z}\). More...
|
|
constexpr callable_eta_ | eta = {} |
| Callable object computing The Dirichlet \( \displaystyle \eta(z) = \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\). More...
|
|
constexpr callable_exp_i_ | exp_i = {} |
| Callable object computing exp_iinary part of values. More...
|
|
constexpr callable_exp_ipi_ | exp_ipi = {} |
| Callable object computing exp_ipiinary part of values. More...
|
|
constexpr callable_faddeeva_ | faddeeva = {} |
| Callable object computing \(e^{-z^2}\mathrm{erfc}(-iz)\) the scaled complex error func. More...
|
|
constexpr callable_i_ | i = {} |
| Callable object computing the pure imaginary ( \(i\)) value. More...
|
|
constexpr callable_imag_ | imag = {} |
| Callable object computing imaginary part of values. More...
|
|
constexpr callable_lambda_ | lambda = {} |
| Callable object computing The Dirichlet \( \displaystyle \lambda(z) = \sum_0^\infty \frac{1}{(2n+1)^z}\). More...
|
|
constexpr callable_polar_ | polar = {} |
| Callable object computing a complex from its polar representatione. More...
|
|
constexpr callable_proj_ | proj = {} |
| Callable object computing proj(x). More...
|
|
constexpr callable_real_ | real = {} |
| Callable object computing real part of values. More...
|
|
constexpr callable_allbits_ | allbits = {} |
| Computes the constant with all bits set. More...
|
|
constexpr callable_as_value_ | as_value = {} |
| converts eve constant or just a value to a type. More...
|
|
constexpr callable_bitincrement_ | bitincrement = {} |
| Computes the constant of type T in which the only bit set is the least significant. More...
|
|
constexpr callable_exponentmask_ | exponentmask = {} |
| Computes the the exponent bit mask of IEEE float or double. More...
|
|
constexpr callable_false__ | false_ = {} |
| Computes the false logical value. More...
|
|
constexpr callable_half_ | half = {} |
| Computes the constant \(1/2\). More...
|
|
constexpr callable_inf_ | inf = {} |
| Computes the infinity ieee value. More...
|
|
constexpr callable_logeps_ | logeps = {} |
| Computes the natural logarithm of the machine epsilon. More...
|
|
constexpr callable_mantissamask_ | mantissamask = {} |
| Computes the mask to extract the mantissa bits of an ieee floating value. More...
|
|
constexpr callable_maxexponent_ | maxexponent = {} |
| Computes the the greatest exponent of a floating point IEEE value. More...
|
|
constexpr callable_maxexponentm1_ | maxexponentm1 = {} |
| Computes the the greatest exponent of a floating point IEEE value minus one. More...
|
|
constexpr callable_maxexponentp1_ | maxexponentp1 = {} |
| Computes the the greatest exponent of a floating point IEEE value plus one. More...
|
|
constexpr callable_maxflint_ | maxflint = {} |
| Computes the the greatest floating point representing an integer and such that n != n+1. More...
|
|
constexpr callable_mhalf_ | mhalf = {} |
| Computes the constant \(-1/2\). More...
|
|
constexpr callable_mindenormal_ | mindenormal = {} |
| Computes the smallest denormal positive value. More...
|
|
constexpr callable_minexponent_ | minexponent = {} |
| Computes the the greatest exponent of a floating point IEEE value. More...
|
|
constexpr callable_minf_ | minf = {} |
| Computes the -infinity ieee value. More...
|
|
constexpr callable_mone_ | mone = {} |
| Computes the constant \(-1\). More...
|
|
constexpr callable_mzero_ | mzero = {} |
| Computes the negative zero value. More...
|
|
constexpr callable_nan_ | nan = {} |
| Computes the IEEE NaN constant. More...
|
|
constexpr callable_nbmantissabits_ | nbmantissabits = {} |
| Returns the number of mantissa bits of a floating point value. More...
|
|
constexpr callable_one_ | one = {} |
| Computes the constant \(1\). More...
|
|
constexpr callable_oneosqrteps_ | oneosqrteps = {} |
| Computes the the inverse of the square root of the machine epsilon. More...
|
|
constexpr callable_signmask_ | signmask = {} |
| Computes a value in which the most significant bit is the only bit set. More...
|
|
constexpr callable_smallestposval_ | smallestposval = {} |
| Computes the smallest normal positive value. More...
|
|
constexpr callable_sqrteps_ | sqrteps = {} |
| Computes the square root of the machine epsilon. More...
|
|
constexpr callable_sqrtsmallestposval_ | sqrtsmallestposval = {} |
| Computes the square root of the eve::smallestposval. More...
|
|
constexpr callable_sqrtvalmax_ | sqrtvalmax = {} |
| Computes the the greatest value less than the square root of eve::valmax. More...
|
|
constexpr callable_true__ | true_ = {} |
| Computes the logical true_ value. More...
|
|
constexpr callable_twotonmb_ | twotonmb = {} |
| Computes the 2 power of the number of mantissa bits of a floating value. More...
|
|
constexpr callable_valmax_ | valmax = {} |
| Computes the the greatest representable value. More...
|
|
constexpr callable_valmin_ | valmin = {} |
| Computes the the lowest representable value. More...
|
|
constexpr callable_zero_ | zero = {} |
| Computes the constant 0. More...
|
|
constexpr compensated_type const | compensated = {} |
| Higher-order Callable Object imbuing more more accuracy onto other Callable Objects. More...
|
|
constexpr cyl_type const | cyl = {} |
| Higher-order Callable Object imbuing cylindrical semantic onto other Callable Objects. More...
|
|
constexpr almost_type const | almost = {} |
| Higher-order Callable Object imbuing a tolerant to little errors semantic onto other Callable Objects. More...
|
|
constexpr definitely_type const | definitely = {} |
| Higher-order Callable Object imbuing a tolerant to small errors semantic onto other Callable Objects. More...
|
|
constexpr tolerant_type const | tolerant = {} |
| Higher-order Callable Object imbuing a less strict semantic onto other Callable Objects. More...
|
|
constexpr p_kind_type const | p_kind = {} |
| Higher-order Callable Object imbuing p_kind behaviour onto other Callable Objects. More...
|
|
constexpr q_kind_type const | q_kind = {} |
| Higher-order Callable Object imbuing q_kind behaviour onto other Callable Objects. More...
|
|
constexpr kind_1_type const | kind_1 = {} |
| Higher-order Callable Object imbuing kind_1 behaviour onto other Callable Objects. More...
|
|
constexpr kind_2_type const | kind_2 = {} |
| Higher-order Callable Object imbuing kind_2 behaviour onto other Callable Objects. More...
|
|
constexpr numeric_type const | numeric = {} |
| Higher-order Callable Object imbuing non invalid return preference semantic onto other Callable Objects. More...
|
|
constexpr pedantic_type const | pedantic = {} |
| Higher-order Callable Object imbuing more standard semantic onto other Callable Objects. More...
|
|
constexpr raw_type const | raw = {} |
| Higher-order Callable Object imbuing quick and dirty behaviour onto other Callable Objects. More...
|
|
constexpr regular_type const | regular = {} |
| Higher-order Callable Object having identity semantic onto other Callable Objects. More...
|
|
constexpr upward_type const | upward = {} |
| Higher-order Callable Object imbuing upward rounding semantic onto other Callable Objects. More...
|
|
constexpr downward_type const | downward = {} |
| Higher-order Callable Object imbuing rounding downard semantic onto other Callable Objects. More...
|
|
constexpr to_nearest_type const | to_nearest = {} |
| Higher-order Callable Object imbuing rounding to nearest semantic onto other Callable Objects. More...
|
|
constexpr toward_zero_type const | toward_zero = {} |
| Higher-order Callable Object imbuing rounding toward zero semantic onto other Callable Objects. More...
|
|
constexpr saturated_type const | saturated = {} |
| Higher-order Callable Object imbuing saturation semantic onto other Callable Objects. More...
|
|
constexpr sph_type const | sph = {} |
| Higher-order Callable Object imbuing spherical semantic onto other Callable Objects. More...
|
|
constexpr successor_type const | successor = {} |
| Higher-order Callable Object imbuing incrementation behaviour onto other Callable Objects. More...
|
|
constexpr callable_abs_ | abs = {} |
| Computes the absolute value of the parameter. More...
|
|
constexpr callable_absmax_ | absmax = {} |
| Computes the absolute value of the maximal element. More...
|
|
constexpr callable_absmin_ | absmin = {} |
| Computes the absolute value of the minimal element. More...
|
|
constexpr callable_add_ | add = {} |
| Computes the sum of its arguments. More...
|
|
constexpr callable_agm_ | agm = {} |
| Computes the arithmetic-geometric mean. More...
|
|
constexpr callable_all_ | all = {} |
| Computes a bool value which is true if and only if all elements of x are not zero. More...
|
|
constexpr callable_any_ | any = {} |
| Computes a bool value which is true if and only if any elements of x is not zero. More...
|
|
constexpr callable_average_ | average = {} |
| Computes the arithmetic mean of its arguments. More...
|
|
constexpr callable_binarize_ | binarize = {} |
| transform logical values to numerical values More...
|
|
constexpr callable_binarize_not_ | binarize_not = {} |
| transform logical values to numerical values More...
|
|
constexpr callable_bit_and_ | bit_and = {} |
| Computes the bitwise AND of its arguments. More...
|
|
constexpr callable_bit_andnot_ | bit_andnot = {} |
| Computes the bitwise ANDNOT of its arguments. More...
|
|
constexpr callable_bit_cast_ | bit_cast = {} |
| Computes a a bitwise reinterpretation of an object. More...
|
|
constexpr callable_bit_ceil_ | bit_ceil = {} |
| Computes the smallest integral power of two that is not smaller than x . More...
|
|
constexpr callable_bit_floor_ | bit_floor = {} |
| If x is not zero, computes the largest integral power of two that is not greater than x . More...
|
|
constexpr callable_bit_mask_ | bit_mask = {} |
| Computes a bit mask full of zeroes or ones. More...
|
|
constexpr callable_bit_not_ | bit_not = {} |
| computes the ones complement of the parameter. More...
|
|
constexpr callable_bit_notand_ | bit_notand = {} |
| Computes the bitwise NOTAND of its arguments. More...
|
|
constexpr callable_bit_notor_ | bit_notor = {} |
| Computes the bitwise NOTOR of its arguments. More...
|
|
constexpr callable_bit_or_ | bit_or = {} |
| Computes the bitwise OR of its arguments. More...
|
|
constexpr callable_bit_ornot_ | bit_ornot = {} |
| Computes the bitwise ORNOT of its arguments. More...
|
|
constexpr callable_bit_select_ | bit_select = {} |
| selects bits from a mask and two entries. More...
|
|
detail::callable_object< tag::shl_ > const | bit_shl = {} |
| Computes a logical left shift. More...
|
|
constexpr callable_bit_shr_ | bit_shr = {} |
| Computes a logical right shift. More...
|
|
constexpr callable_bit_width_ | bit_width = {} |
| Computes elementwise the number of bits needed to store the parameter. More...
|
|
constexpr callable_bit_xor_ | bit_xor = {} |
| Computes the bitwise XOR of its arguments. More...
|
|
constexpr callable_bitofsign_ | bitofsign = {} |
| Computes the value in the input type of the bit of sign. More...
|
|
constexpr callable_broadcast_ | broadcast = {} |
| Computes the. More...
|
|
constexpr callable_broadcast_group_ | broadcast_group = {} |
| Computes the TODO. More...
|
|
constexpr callable_ceil_ | ceil = {} |
| Computes the smallest integer not less than the input. More...
|
|
constexpr callable_clamp_ | clamp = {} |
| Computes the largest integer not greater than the input. More...
|
|
constexpr callable_combine_ | combine = {} |
| Computes the TODO. More...
|
|
constexpr callable_compress_store_ | compress_store = {} |
| Computes the TODO. More...
|
|
constexpr callable_conj_ | conj = {} |
| Computes the the conjugate value. More...
|
|
constexpr callable_convert_ | convert = {} |
| Converts a value to another type. More...
|
|
constexpr converter_type< float > const | float32 = {} |
| convert a eve::value to a float32 based eve::floating_value. More...
|
|
constexpr converter_type< double > const | float64 = {} |
| convert a eve::value to a double based eve::floating_value. More...
|
|
constexpr converter_type< std::uint8_t > const | uint8 = {} |
| convert a eve::value to a std::uint8_t based eve::value. More...
|
|
constexpr converter_type< std::uint16_t > const | uint16 = {} |
| convert a eve::value to a std::uint16_t based eve::value. More...
|
|
constexpr converter_type< std::uint32_t > const | uint32 = {} |
| convert a eve::value to a std::uint32_t based eve::value. More...
|
|
constexpr converter_type< std::uint64_t > const | uint64 = {} |
| convert a eve::value to a std::uint64_t based eve::value. More...
|
|
constexpr converter_type< std::int8_t > const | int8 = {} |
| convert a eve::value to a std::int8_t based eve::value. More...
|
|
constexpr converter_type< std::int16_t > const | int16 = {} |
| convert a eve::value to a std;::int16_t based eve::value. More...
|
|
constexpr converter_type< std::int32_t > const | int32 = {} |
| convert a eve::value to a std::int32_t based eve::value. More...
|
|
constexpr converter_type< std::int64_t > const | int64 = {} |
| convert a eve::value to a std::int64_t based eve::value. More...
|
|
constexpr int_converter const | int_ = {} |
| convert a eve::value to a integral based eve::value. More...
|
|
constexpr uint_converter const | uint_ = {} |
| convert a eve::value to a unsigned integral based eve::value. More...
|
|
constexpr floating_converter const | floating_ = {} |
| convert a eve::value to an eve::floating_value. More...
|
|
constexpr upgrade_converter const | upgrade_ = {} |
| convert a eve::value to the upgraded base type. More...
|
|
constexpr callable_copysign_ | copysign = {} |
| Computes the elementwise composition of a value with the magnitude of the first parameter and the bit of sign of the second one. More...
|
|
constexpr callable_count_true_ | count_true = {} |
| Computes the number of non 0 elements. More...
|
|
constexpr callable_countl_one_ | countl_one = {} |
| Computes the number of consecutive 1 in a value starting from left. More...
|
|
constexpr callable_countl_zero_ | countl_zero = {} |
| Computes the number of consecutive 0 in a value starting from left. More...
|
|
constexpr callable_countr_one_ | countr_one = {} |
| Computes the number of consecutive 1 in a value starting from right. More...
|
|
constexpr callable_countr_zero_ | countr_zero = {} |
| Computes the number of consecutive 0 in a value starting from right. More...
|
|
constexpr callable_dec_ | dec = {} |
| return the input decremented by 1. More...
|
|
constexpr callable_deinterleave_groups_ | deinterleave_groups = {} |
| deinterleaves values in n wides More...
|
|
constexpr callable_deinterleave_groups_shuffle_ | deinterleave_groups_shuffle = {} |
| Callable object for a deinterleave groups shuffle. More...
|
|
constexpr callable_diff_of_prod_ | diff_of_prod = {} |
| Computes the difference of products operation with better accuracy than the naive formula. More...
|
|
constexpr callable_dist_ | dist = {} |
| Computes the distance of its arguments. More...
|
|
constexpr callable_div_ | div = {} |
| Computes the division of multiple values. More...
|
|
constexpr callable_exponent_ | exponent = {} |
| Computes the IEEE exponent of the floating value. More...
|
|
constexpr callable_fam_ | fam = {} |
| Computes the fused add multiply of its three parameters. More...
|
|
constexpr callable_fanm_ | fanm = {} |
| Computes the fused add negate multiply of its three parameters. More...
|
|
constexpr callable_fdim_ | fdim = {} |
| Computes the positive difference between the two parameters. More...
|
|
constexpr callable_firstbitset_ | firstbitset = {} |
| Computes elementwise the bit pattern in which the only bit set (if it exists) is the first bit set in the input. More...
|
|
constexpr callable_firstbitunset_ | firstbitunset = {} |
| Computes elementwise the bit pattern in which the only bit set (if it exists) is the first bit unset in the input. More...
|
|
constexpr callable_floor_ | floor = {} |
| Computes the largest integer not greater than the input. More...
|
|
constexpr callable_fma_ | fma = {} |
| Computes the fused multiply add of its three parameters. More...
|
|
constexpr callable_fmod_ | fmod = {} |
| Alias of eve::pedantic(eve::rem).
|
|
constexpr callable_fms_ | fms = {} |
| Computes the fused multiply substract of its three parameters. More...
|
|
constexpr callable_fnma_ | fnma = {} |
| Computes the fused negate multiply add of its three parameters. More...
|
|
constexpr callable_fnms_ | fnms = {} |
| Computes the fused negate multiply substract of its three parameters. More...
|
|
constexpr callable_frac_ | frac = {} |
| Computes the fractional part of the input. More...
|
|
constexpr callable_fracscale_ | fracscale = {} |
| Computes the reduced part of the scaled input. More...
|
|
constexpr callable_frexp_ | frexp = {} |
| Computes the elementwise ieee pair of mantissa and exponent of the floating value,. More...
|
|
constexpr callable_fsm_ | fsm = {} |
| Computes the fused negate add multiply of its three parameters. More...
|
|
constexpr callable_fsnm_ | fsnm = {} |
| Computes the fused negate substact multiply of its three parameters. More...
|
|
constexpr callable_gather_ | gather = {} |
| Computes the TODO. More...
|
|
constexpr callable_hi_ | hi = {} |
| Computes the most significant half of each lane. More...
|
|
constexpr callable_if_else_ | if_else = {} |
| Computes the results of a choice under condition. More...
|
|
constexpr callable_ifnot_else_ | ifnot_else = {} |
| eve::ifnot_else (x, y, z) syntaxic sugar for eve::if_else (x, z, y) More...
|
|
constexpr callable_ifrexp_ | ifrexp = {} |
| Computes the elementwise ieee pair of mantissa and exponent of the floating value,. More...
|
|
constexpr callable_inc_ | inc = {} |
| return the input incremented by one. More...
|
|
constexpr callable_is_denormal_ | is_denormal = {} |
| Returns a logical true if and only if the element value is denormal. More...
|
|
constexpr callable_is_equal_ | is_equal = {} |
| Returns a logical true if and only if the element value are equal. More...
|
|
constexpr callable_is_eqz_ | is_eqz = {} |
| Returns a logical true if and only if the element value is zero. More...
|
|
constexpr callable_is_even_ | is_even = {} |
| Returns a logical true if and only if the element value is even. More...
|
|
constexpr callable_is_finite_ | is_finite = {} |
| Returns a logical true if and only if the element is a finite value. More...
|
|
constexpr callable_is_flint_ | is_flint = {} |
| Returns a logical true if and only if the element value is a floating value representing an integer. More...
|
|
constexpr callable_is_gez_ | is_gez = {} |
| Returns a logical true if and only if the element value is greater or equal to 0. More...
|
|
constexpr callable_is_greater_ | is_greater = {} |
| Returns a logical true if and only if the element value of the first parameter is greater than the second one. More...
|
|
constexpr callable_is_greater_equal_ | is_greater_equal = {} |
| Returns a logical true if and only if the element value of the first parameter is greater or equal to the second one. More...
|
|
constexpr callable_is_gtz_ | is_gtz = {} |
| Returns a logical true if and only if the element value is greater than 0. More...
|
|
constexpr callable_is_imag_ | is_imag = {} |
| Returns a logical true if and only if the element value is imaginary. More...
|
|
constexpr callable_is_infinite_ | is_infinite = {} |
| Returns a logical true if and only if the element is an infinite value. More...
|
|
constexpr callable_is_less_ | is_less = {} |
| Returns a logical true if and only if the element value of the first parameter is less than the second one. More...
|
|
constexpr callable_is_less_equal_ | is_less_equal = {} |
| Returns a logical true if and only if the element value of the first parameter is less or equal to the second one. More...
|
|
constexpr callable_is_lessgreater_ | is_lessgreater = {} |
| Returns a logical true if and only if the elements pair are not equal or unordered. More...
|
|
constexpr callable_is_lez_ | is_lez = {} |
| Returns a logical true if and only if the element value is less or equal to 0. More...
|
|
constexpr callable_is_ltz_ | is_ltz = {} |
| Returns a logical true if and only if the element value is less than 0. More...
|
|
constexpr callable_is_negative_ | is_negative = {} |
| Returns a logical true if and only if the element value is signed and has its sign bit set. More...
|
|
constexpr callable_is_nez_ | is_nez = {} |
| Returns a logical true if and only if the element value is not zero. More...
|
|
constexpr callable_is_ngez_ | is_ngez = {} |
| Returns a logical true if and only if the element value is not greater or equal to 0. More...
|
|
constexpr callable_is_ngtz_ | is_ngtz = {} |
| Returns a logical true if and only if the element value is not greater than zero. More...
|
|
constexpr callable_is_nlez_ | is_nlez = {} |
| Returns a logical true if and only if the element value is not less or equal to 0. More...
|
|
constexpr callable_is_nltz_ | is_nltz = {} |
| Returns a logical true if and only if the element value is not less than zero. More...
|
|
constexpr callable_is_normal_ | is_normal = {} |
| Returns a logical true if and only if the element value is normal. More...
|
|
constexpr callable_is_not_denormal_ | is_not_denormal = {} |
| Returns a logical true if and only if the element value is not denormal. More...
|
|
constexpr callable_is_not_equal_ | is_not_equal = {} |
| Returns a logical true if and only if the element value are not equal. More...
|
|
constexpr callable_is_not_finite_ | is_not_finite = {} |
| Returns a logical true if and only if the element is not a finite value. More...
|
|
constexpr callable_is_not_flint_ | is_not_flint = {} |
| Returns a logical true if and only if the element value is a floating value not representing an integer. More...
|
|
constexpr callable_is_not_greater_ | is_not_greater = {} |
| Returns a logical true if and only if the element value of the first parameter is not greater than the second one. More...
|
|
constexpr callable_is_not_greater_equal_ | is_not_greater_equal = {} |
| Returns a logical true if and only if the element value of the first parameter is greater or equal to the second one. More...
|
|
constexpr callable_is_not_imag_ | is_not_imag = {} |
| Returns a logical true if and only if the element value is not imaginary. More...
|
|
constexpr callable_is_not_infinite_ | is_not_infinite = {} |
| Returns a logical true if and only if the element is not an infinite value. More...
|
|
constexpr callable_is_not_less_ | is_not_less = {} |
| Returns a logical true if and only if the element value of the first parameter is not less than the second one. More...
|
|
constexpr callable_is_not_nan_ | is_not_nan = {} |
| Returns a logical true if and only if the element value is not NaN. More...
|
|
constexpr callable_is_not_real_ | is_not_real = {} |
| Returns a logical true if and only if the element value is not real. More...
|
|
constexpr callable_is_odd_ | is_odd = {} |
| Returns a logical true if and only if the element value is odd. More...
|
|
constexpr callable_is_ordered_ | is_ordered = {} |
| Returns a logical true if and only no parameter is NaN. More...
|
|
constexpr callable_is_positive_ | is_positive = {} |
| Returns a logical true if and only if the element value is signed and has its sign bit not set. More...
|
|
constexpr callable_is_pow2_ | is_pow2 = {} |
| Returns a logical true if and only if the element value is a power of 2. More...
|
|
constexpr callable_is_real_ | is_real = {} |
| Returns a logical true if and only if the element value is real. More...
|
|
constexpr callable_is_unordered_ | is_unordered = {} |
| Returns a logical true if and only if at least one of the parameters is NaN. More...
|
|
constexpr callable_ldexp_ | ldexp = {} |
| Computes \(\textstyle x 2^n\). More...
|
|
constexpr callable_lerp_ | lerp = {} |
| Computes the linear interpolation. More...
|
|
constexpr callable_lo_ | lo = {} |
| Computes the least significant half of each lane. More...
|
|
constexpr callable_logical_and_ | logical_and = {} |
| Computes the logical AND of its arguments. More...
|
|
constexpr callable_logical_andnot_ | logical_andnot = {} |
| Computes the logical ANDNOT of its arguments. More...
|
|
constexpr callable_logical_not_ | logical_not = {} |
| Computes the logical NOT of its argument. More...
|
|
constexpr callable_logical_notand_ | logical_notand = {} |
| Computes the logical NOTAND of its arguments. More...
|
|
constexpr callable_logical_notor_ | logical_notor = {} |
| Computes the logical NOTOR of its arguments. More...
|
|
constexpr callable_logical_or_ | logical_or = {} |
| Computes the logical OR of its arguments. More...
|
|
constexpr callable_logical_ornot_ | logical_ornot = {} |
| Computes the logical ORNOT of its arguments. More...
|
|
constexpr callable_logical_xor_ | logical_xor = {} |
| Computes the logical XOR of its arguments. More...
|
|
constexpr callable_lohi_ | lohi = {} |
| Computes the the lohi pair of values. More...
|
|
constexpr callable_manhattan_ | manhattan = {} |
| Computes the manhattan norm ( \(l_1\)) of its arguments. More...
|
|
constexpr callable_mantissa_ | mantissa = {} |
| Computes the IEEE mantissa of the floating value. More...
|
|
constexpr callable_max_ | max = {} |
| Computes the maximum of its arguments. More...
|
|
constexpr callable_maxabs_ | maxabs = {} |
| Computes the maximum of the absolute value of its arguments. More...
|
|
constexpr callable_maximum_ | maximum = {} |
| Computes the maximal value of an simd vector. More...
|
|
constexpr callable_maxmag_ | maxmag = {} |
| Computes the maximum of the absolute value of its arguments. More...
|
|
constexpr callable_min_ | min = {} |
| Computes the minimum of its arguments. More...
|
|
constexpr callable_minabs_ | minabs = {} |
| Computes the minimum of the absolute value of its arguments. More...
|
|
constexpr callable_minimum_ | minimum = {} |
| Computes the maximal value of an simd vector. More...
|
|
constexpr callable_minmag_ | minmag = {} |
| Computes the maximum of the absolute value of its arguments. More...
|
|
constexpr callable_minus_ | minus = {} |
| Computes the opposite of the parameter that must be signed. More...
|
|
constexpr callable_modf_ | modf = {} |
| Computes the elementwise pair of fractional and integral parts of the value,. More...
|
|
constexpr callable_mul_ | mul = {} |
| Computes the sum of its arguments. More...
|
|
constexpr callable_nb_values_ | nb_values = {} |
| Computes the number of values representable in the type between the arguments. More...
|
|
constexpr callable_nearest_ | nearest = {} |
| Computes the nearest integer to the input. More...
|
|
constexpr callable_negabsmax_ | negabsmax = {} |
| Computes the negated absolute value of the maximal element. More...
|
|
constexpr callable_negabsmin_ | negabsmin = {} |
| Computes the negated absolute value of the minimal element. More...
|
|
constexpr callable_negate_ | negate = {} |
| Computes the elementwise product of the first parameter by the sign of the second. More...
|
|
constexpr callable_negatenz_ | negatenz = {} |
| Computes the elementwise product of the first parameter by the never zero sign of the second. More...
|
|
constexpr callable_negmaxabs_ | negmaxabs = {} |
| Computes the negated value of the element of the maximal absolute value. More...
|
|
constexpr callable_negminabs_ | negminabs = {} |
| Computes the negated value of the element of the minimal absolute value. More...
|
|
constexpr callable_next_ | next = {} |
| Computes the nth next representable element. More...
|
|
constexpr callable_nextafter_ | nextafter = {} |
| Computes the nth next representable element. More...
|
|
constexpr callable_none_ | none = {} |
| Computes a bool value which is true if and only if all elements of x are 0. More...
|
|
constexpr callable_oneminus_ | oneminus = {} |
| Computes the value of one minus the input. More...
|
|
constexpr callable_plus_ | plus = {} |
| Computes the opposite of the parameter that must be signed. More...
|
|
constexpr callable_popcount_ | popcount = {} |
| Computes elementwise the number of bits set in the parameter. More...
|
|
constexpr callable_prev_ | prev = {} |
| Computes the nth previous representable element. More...
|
|
constexpr callable_rat_ | rat = {} |
| Computes a rational approximation. More...
|
|
constexpr callable_read_ | read = {} |
| Callable object reading single value from memory. More...
|
|
constexpr callable_rec_ | rec = {} |
| Computes the inverse of the parameter. More...
|
|
constexpr callable_reduce_ | reduce = {} |
| Computes the TODO. More...
|
|
constexpr callable_rem_ | rem = {} |
| Computes the remainder after division. More...
|
|
constexpr callable_round_ | round = {} |
| Computes the integer nearest to the input. More...
|
|
constexpr callable_roundscale_ | roundscale = {} |
| Computes the scaled input rounding. More...
|
|
constexpr callable_rshl_ | rshl = {} |
| Computes the arithmetic left/right shift operation according to shift sign. More...
|
|
constexpr callable_rshr_ | rshr = {} |
| Computes the arithmetic right/left shift operation according to shift sign. More...
|
|
constexpr callable_rsqrt_ | rsqrt = {} |
| Computes the inverse of the square root of the parameter. More...
|
|
constexpr callable_scan_ | scan = {} |
| Computes the TODO. More...
|
|
constexpr callable_shl_ | shl = {} |
| Computes the arithmetic left shift operation. More...
|
|
constexpr callable_shr_ | shr = {} |
| Computes the arithmetic right shift operation. More...
|
|
constexpr callable_sign_ | sign = {} |
| Computes the sign of the parameter. More...
|
|
constexpr callable_sign_alternate_ | sign_alternate = {} |
| Computes \((-1)^n\). More...
|
|
constexpr callable_signnz_ | signnz = {} |
| Computes the never zero sign of the parameter. More...
|
|
constexpr splat_type const | splat = {} |
| Computes the TODO. More...
|
|
constexpr callable_sqr_ | sqr = {} |
| Computes the square of the parameter. More...
|
|
constexpr callable_sqr_abs_ | sqr_abs = {} |
| Computes the square of the absolute value of the parameter. More...
|
|
constexpr callable_sqrt_ | sqrt = {} |
| Computes the square root of the parameter. More...
|
|
constexpr callable_store_ | store = {} |
| Callable object computing //! description NOT FOUND. More...
|
|
constexpr callable_store_equivalent_ | store_equivalent = {} |
| Callable object, customisation point. If an iterator's store operation can be done as a store to some other iterator/pointer - this is a transformation to customize. More...
|
|
constexpr callable_sub_ | sub = {} |
| Computes the sum of its arguments. More...
|
|
constexpr callable_sum_of_prod_ | sum_of_prod = {} |
| Computes the sum of products operation with better accuracy than the naive formula. More...
|
|
constexpr callable_three_fma_ | three_fma = {} |
| Computes the elementwise triple of fma and errors,. More...
|
|
constexpr callable_trunc_ | trunc = {} |
| Computes the integral part of x with the same sign as x . More...
|
|
constexpr callable_two_add_ | two_add = {} |
| Computes the elementwise pair of sum and error,. More...
|
|
constexpr callable_two_prod_ | two_prod = {} |
| Computes the elementwise pair of product and error,. More...
|
|
constexpr callable_ulpdist_ | ulpdist = {} |
| Computes the unit in the last place distance of its arguments. Defined in Header More...
|
|
constexpr callable_unalign_ | unalign = {} |
| Callable object for computing an unaligned version of a relaxed iterator. More...
|
|
constexpr callable_write_ | write = {} |
| Callable object writing single value from memory. More...
|
|
constexpr callable_zip_ | zip = {} |
| lable object constructing a SoA value. More...
|
|
constexpr callable_ellint_1_ | ellint_1 = {} |
| Computes the elliptic integrals of the first kind : \(\mathbf{F}(\phi, k) = \int_0^{\phi} \frac{\mathrm{d}t}{\sqrt{1-k^2\sin^2 t}}\) and \(\mathbf{K}(k) = \int_0^{\pi/2} \frac{\mathrm{d}t}{\sqrt{1-k^2\sin^2 t}}\). More...
|
|
constexpr callable_ellint_2_ | ellint_2 = {} |
| Computes the elliptic integrals of the second kind : \( \mathbf{E}(\phi, k) = \int_0^{\phi} \scriptstyle \sqrt{1-k^2\sin^2 t}
\scriptstyle\;\mathrm{d}t\) and \(\mathbf{E}(k) = \int_0^{\pi/2} \scriptstyle \sqrt{1-k^2\sin^2 t}
\scriptstyle\;\mathrm{d}t\). More...
|
|
constexpr callable_ellint_d_ | ellint_d = {} |
| Computes the \(\mbox{D}\) elliptic integrals : \( \mathbf{D}(\phi, k) = \int_0^{\phi} \frac{\sin^2 t}{\sqrt{1-k^2\sin^2 t}}
\scriptstyle\;\mathrm{d}t\) and \( \mathbf{D}(k) = \int_0^{\pi/2} \frac{\sin^2 t}{\sqrt{1-k^2\sin^2 t}}
\scriptstyle\;\mathrm{d}t\). More...
|
|
constexpr callable_ellint_rc_ | ellint_rc = {} |
| computes the degenerate Carlson's elliptic integral \( \mathbf{R}_\mathbf{C}(x, y) = \frac12 \int_{0}^{\infty}
\scriptstyle(t+x)^{-1/2}(t+y)^{-1}\scriptstyle\;\mathrm{d}t\). More...
|
|
constexpr callable_ellint_rd_ | ellint_rd = {} |
| Computes the Carlson's elliptic integral. More...
|
|
constexpr callable_ellint_rf_ | ellint_rf = {} |
| Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{F}(x, y) = \mathbf{R}_\mathbf{D}(x, y) =
\frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2}
(t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\). More...
|
|
constexpr callable_ellint_rg_ | ellint_rg = {} |
| Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{G}(x, y) = \frac1{4\pi} \int_{0}^{2\pi}\int_{0}^{\pi}
\scriptstyle\sqrt{x\sin^2\theta\cos^2\phi
+y\sin^2\theta\sin^2\phi
+z\cos^2\theta} \scriptstyle\;\mathrm{d}\theta\;\mathrm{d}\phi\). More...
|
|
constexpr callable_ellint_rj_ | ellint_rj = {} |
| Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty}
\scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\). More...
|
|
constexpr callable_catalan_ | catalan = {} |
| Callable object computing the catalan constant \(\beta(2) = \sum_0^\infty
\frac{(-1)^n}{(2n+1)^2}\). More...
|
|
constexpr callable_cbrt_pi_ | cbrt_pi = {} |
| Callable object computing the constant \(\sqrt[3]\pi\). More...
|
|
constexpr callable_cos_1_ | cos_1 = {} |
| Callable object computing the constant \(\cos1\). More...
|
|
constexpr callable_cosh_1_ | cosh_1 = {} |
| Callable object computing the constant \(\cosh(1)\). More...
|
|
constexpr callable_egamma_ | egamma = {} |
| Callable object computing the Euler-Mascheroni constant : \(\gamma =
\lim_{n\to\infty}\left( \sum_{k = 0}^n \frac1k - \log n\right )\). More...
|
|
constexpr callable_egamma_sqr_ | egamma_sqr = {} |
| Callable object computing the square of the [Euler-Mascheroni constant](eve::egamma). More...
|
|
constexpr callable_epso_2_ | epso_2 = {} |
| Callable object computing the half of the machine epsilon. More...
|
|
constexpr callable_euler_ | euler = {} |
| Callable object computing the constant \(\e^1\). More...
|
|
constexpr callable_exp_pi_ | exp_pi = {} |
| Callable object computing the constant \(e^\pi\). More...
|
|
constexpr callable_extreme_value_skewness_ | extreme_value_skewness = {} |
| Callable object computing the extreme value distribution skewness : \(12\sqrt6\zeta(3)/\pi^3\). More...
|
|
constexpr callable_four_minus_pi_ | four_minus_pi = {} |
| Callable object computing the constant \(4-\pi\). More...
|
|
constexpr callable_four_pio_3_ | four_pio_3 = {} |
| Callable object computing the constant \(4\pi/3\). More...
|
|
constexpr callable_glaisher_ | glaisher = {} |
| Callable object computing the Glaisher-Kinkelin constant. More...
|
|
constexpr callable_inv_2eps_ | inv_2eps = {} |
| Callable object computing half the inverse of the machine epsilon. More...
|
|
constexpr callable_inv_2pi_ | inv_2pi = {} |
| Callable object computing the constant \(\frac{1}{2\pi}\). More...
|
|
constexpr callable_inv_e_ | inv_e = {} |
| Callable object computing the constant \(e^{-1}\). More...
|
|
constexpr callable_inv_egamma_ | inv_egamma = {} |
| Callable object computing the inverse of the [Euler-Mascheroni constant](eve::egamma). More...
|
|
constexpr callable_inv_pi_ | inv_pi = {} |
| Callable object computing the constant \(\frac{1}{\pi}\). More...
|
|
constexpr callable_invcbrt_pi_ | invcbrt_pi = {} |
| Callable object computing the constant \(\pi^{-1/3}\). More...
|
|
constexpr callable_invlog10_2_ | invlog10_2 = {} |
| Callable object computing the constant \(1/\log_{10}2\). More...
|
|
constexpr callable_invlog10_e_ | invlog10_e = {} |
| Callable object computing the constant \(1/\log_{10}e\). More...
|
|
constexpr callable_invlog_10_ | invlog_10 = {} |
| Callable object computing \(1/\log10\). More...
|
|
constexpr callable_invlog_2_ | invlog_2 = {} |
| Callable object computing the constant \(1/\log2\). More...
|
|
constexpr callable_invlog_phi_ | invlog_phi = {} |
| Callable object computing the inverse of the logarithm of the golden ratio : \(1/\log((1+\sqrt5)/2)\). More...
|
|
constexpr callable_invsqrt_2_ | invsqrt_2 = {} |
| Callable object computing the constant \(2^{-1/2}\). More...
|
|
constexpr callable_khinchin_ | khinchin = {} |
| Callable object computing the Khinchin constant. More...
|
|
constexpr callable_log10_e_ | log10_e = {} |
| Callable object computing the constant \(\log_{10}e\). More...
|
|
constexpr callable_log2_e_ | log2_e = {} |
| Callable object computing the constant \(\log_2 e\). More...
|
|
constexpr callable_log_10_ | log_10 = {} |
| Callable object computing the constant \(\log 10\). More...
|
|
constexpr callable_log_2_ | log_2 = {} |
| Callable object computing the constant \(\log 2\). More...
|
|
constexpr callable_log_phi_ | log_phi = {} |
| Callable object computing the logarithm of the golden ratio : \(\log((1+\sqrt5)/2)\). More...
|
|
constexpr callable_loglog_2_ | loglog_2 = {} |
| Callable object computing the constant \(\log(\log2)\). More...
|
|
constexpr callable_maxlog_ | maxlog = {} |
| Callable object computing the greatest positive value for which eve::exp is finite. More...
|
|
constexpr callable_maxlog10_ | maxlog10 = {} |
| Callable object computing the greatest positive value for which eve::exp10 is finite. More...
|
|
constexpr callable_maxlog2_ | maxlog2 = {} |
| Callable object computing the greatest positive value for which eve::exp2 is finite. More...
|
|
constexpr callable_minlog_ | minlog = {} |
| Callable object computing the least value for which eve::exp is not zero. More...
|
|
constexpr callable_minlog10_ | minlog10 = {} |
| Callable object computing the least value for which eve::exp10 is not zero. More...
|
|
constexpr callable_minlog10denormal_ | minlog10denormal = {} |
| Callable object computing the least value for which eve::exp10 is not denormal. More...
|
|
constexpr callable_minlog2_ | minlog2 = {} |
| Callable object computing the least value for which eve::exp2 is not zero. More...
|
|
constexpr callable_minlog2denormal_ | minlog2denormal = {} |
| Callable object computing the least value for which eve::exp2 is not denormal. More...
|
|
constexpr callable_minlogdenormal_ | minlogdenormal = {} |
| Callable object computing the least value for which eve::exp is not denormal. More...
|
|
constexpr callable_phi_ | phi = {} |
| Callable object computing the golden ratio : \(\frac{1+\sqrt5}2\). More...
|
|
constexpr callable_pi_ | pi = {} |
| Callable object computing the constant \(\pi\). More...
|
|
constexpr callable_pi2_ | pi2 = {} |
| Callable object computing the square of \(\pi\). More...
|
|
constexpr callable_pi2o_16_ | pi2o_16 = {} |
| Callable object computing the constant \(\pi^2/16\). More...
|
|
constexpr callable_pi2o_6_ | pi2o_6 = {} |
| Callable object computing the constant \(\pi^2/6\). More...
|
|
constexpr callable_pi3_ | pi3 = {} |
| Callable object computing the pi cubed value : \(\pi^3\). More...
|
|
constexpr callable_pi_minus_3_ | pi_minus_3 = {} |
| Callable object computing the constant \(\pi-3\). More...
|
|
constexpr callable_pi_pow_e_ | pi_pow_e = {} |
| Callable object computing the constant \(\pi^e\). More...
|
|
constexpr callable_pio_2_ | pio_2 = {} |
| Callable object computing the constant \(\pi/2\). More...
|
|
constexpr callable_pio_3_ | pio_3 = {} |
| Callable object computing the constant \(\pi/3\). More...
|
|
constexpr callable_pio_4_ | pio_4 = {} |
| Callable object computing the constant \(\pi/4\). More...
|
|
constexpr callable_pio_6_ | pio_6 = {} |
| Callable object computing the constant \(\pi/6\). More...
|
|
constexpr callable_rayleigh_kurtosis_ | rayleigh_kurtosis = {} |
| Callable object computing the Rayleigh kurtosis value : \(3+(6\pi^2-24\pi+16)/(4-\pi^2)\). More...
|
|
constexpr callable_rayleigh_kurtosis_excess_ | rayleigh_kurtosis_excess = {} |
| Callable object computing the Rayleigh kurtosis excess value : \(-(6\pi^2-24\pi+16)/(4-\pi^2)\). More...
|
|
constexpr callable_rayleigh_skewness_ | rayleigh_skewness = {} |
| Callable object computing the Rayleigh skewness value : \(2\sqrt\pi(\pi-3)/(4-\pi^{3/2})\). More...
|
|
constexpr callable_rsqrt_2pi_ | rsqrt_2pi = {} |
| Callable object computing the constant \(1/\sqrt{2\pi}\). More...
|
|
constexpr callable_rsqrt_e_ | rsqrt_e = {} |
| Callable object computing the constant \(1/\sqrt{e}\). More...
|
|
constexpr callable_rsqrt_pi_ | rsqrt_pi = {} |
| Callable object computing the constant \(\pi^{-1/2}\). More...
|
|
constexpr callable_rsqrt_pio_2_ | rsqrt_pio_2 = {} |
| Callable object computing the constant \((\pi/2)^{-1/2}\). More...
|
|
constexpr callable_sin_1_ | sin_1 = {} |
| Callable object computing the constant \(\sin(1)\). More...
|
|
constexpr callable_sinh_1_ | sinh_1 = {} |
| Callable object computing the constant \(\sinh(1)\). More...
|
|
constexpr callable_sixth_ | sixth = {} |
| Callable object computing the constant \(1/6\). More...
|
|
constexpr callable_sqrt_2_ | sqrt_2 = {} |
| Callable object computing the constant \(\sqrt2\). More...
|
|
constexpr callable_sqrt_2pi_ | sqrt_2pi = {} |
| Callable object computing the constant \(\sqrt{2\pi}\). More...
|
|
constexpr callable_sqrt_3_ | sqrt_3 = {} |
| Callable object computing constant \(\sqrt{3}\). More...
|
|
constexpr callable_sqrt_e_ | sqrt_e = {} |
| Callable object computing the constant \(\sqrt{e}\). More...
|
|
constexpr callable_sqrt_pi_ | sqrt_pi = {} |
| Callable object computing the constant \(\sqrt{\pi}\). More...
|
|
constexpr callable_sqrt_pio_2_ | sqrt_pio_2 = {} |
| Callable object computing the constant \(\sqrt{\pi/2}\). More...
|
|
constexpr callable_sqrtlog_4_ | sqrtlog_4 = {} |
| Callable object computing the constant \(\sqrt{\log4}\). More...
|
|
constexpr callable_third_ | third = {} |
| Callable object computing the constant \(1/3\). More...
|
|
constexpr callable_three_o_4_ | three_o_4 = {} |
| Callable object computing the constant \(3/4\). More...
|
|
constexpr callable_three_pio_4_ | three_pio_4 = {} |
| Callable object computing the constant \(3\pi/4\). More...
|
|
constexpr callable_two_o_3_ | two_o_3 = {} |
| Callable object computing the constant \(2/3\). More...
|
|
constexpr callable_two_o_pi_ | two_o_pi = {} |
| Callable object computing the constant \(2/\pi\). More...
|
|
constexpr callable_two_o_sqrt_pi_ | two_o_sqrt_pi = {} |
| Callable object computing the constant \(2/\sqrt\pi\). More...
|
|
constexpr callable_two_pi_ | two_pi = {} |
| Callable object computing the constant \(2\pi\). More...
|
|
constexpr callable_two_pio_3_ | two_pio_3 = {} |
| Callable object computing the constant \(2\pi/3\). More...
|
|
constexpr callable_zeta_2_ | zeta_2 = {} |
| Callable object computing the constant \(\zeta(2)\). More...
|
|
constexpr callable_zeta_3_ | zeta_3 = {} |
| Callable object computing the constant \(\zeta(3)\). More...
|
|
constexpr full_circle_type const | full_circle = {} |
| Higher-order Callable Object imbuing a limited range semantic onto other Callable Objects. More...
|
|
constexpr quarter_circle_type const | quarter_circle = {} |
| Higher-order Callable Object imbuing a limited range semantic onto other Callable Objects. More...
|
|
constexpr half_circle_type const | half_circle = {} |
| Higher-order Callable Object imbuing a limited range standard semantic onto other Callable Objects. More...
|
|
constexpr callable_acos_ | acos = {} |
| Callable object computing the arc cosine. More...
|
|
constexpr callable_acosd_ | acosd = {} |
| Callable object computing the arc cosine from input in degree. More...
|
|
constexpr callable_acosh_ | acosh = {} |
| Callable object computing \(\log(x+\sqrt{x^2-1})\). More...
|
|
constexpr callable_acospi_ | acospi = {} |
| Callable object computing the arc cosine in \(\pi\) multiples. More...
|
|
constexpr callable_acot_ | acot = {} |
| Callable object computing the arc cotangent. More...
|
|
constexpr callable_acotd_ | acotd = {} |
| Callable object computing arc cotangent in degree. More...
|
|
constexpr callable_acoth_ | acoth = {} |
| Callable object computing \(\frac{1}{2}\log((x+1)/(x-1))\). More...
|
|
constexpr callable_acotpi_ | acotpi = {} |
| Callable object computing in \(\pi\) multiples. More...
|
|
constexpr callable_acsc_ | acsc = {} |
| Callable object computing the arc cosecant. More...
|
|
constexpr callable_acscd_ | acscd = {} |
| Callable object computing the arc cosecant rom an input in degrees. More...
|
|
constexpr callable_acsch_ | acsch = {} |
| Callable object computing \(\log(1/x+\sqrt{1/x^2+1})\). More...
|
|
constexpr callable_acscpi_ | acscpi = {} |
| Callable object computing he arc cosecant in \(\pi\) multiples. More...
|
|
constexpr callable_arg_ | arg = {} |
| Callable object computing the phase angle (in radians). More...
|
|
constexpr callable_asec_ | asec = {} |
| Callable object computing the arc secant. More...
|
|
constexpr callable_asecd_ | asecd = {} |
| Callable object computing the arc secant in degrees. More...
|
|
constexpr callable_asech_ | asech = {} |
| Callable object computing \(\log(1/x+\sqrt{1/x^2-1})\). More...
|
|
constexpr callable_asecpi_ | asecpi = {} |
| Callable object computing the arc secant in \(\pi\) multiples. More...
|
|
constexpr callable_asin_ | asin = {} |
| Callable object computing the arc sine. More...
|
|
constexpr callable_asind_ | asind = {} |
| Callable object computing the arc sine in degrees. More...
|
|
constexpr callable_asinh_ | asinh = {} |
| Callable object computing \(\log(x+\sqrt{x^2+1})\). More...
|
|
constexpr callable_asinpi_ | asinpi = {} |
| Callable object computing computing the arc sine in \(\pi\) multiples. More...
|
|
constexpr callable_atan_ | atan = {} |
| Callable object computing the arc tangent. More...
|
|
constexpr callable_atan2_ | atan2 = {} |
| Callable object computing the arc tangent using the signs of arguments to determine the correct quadrant. More...
|
|
constexpr callable_atan2d_ | atan2d = {} |
| Callable object computing the arc tangent in degrees using the signs of arguments to determine the correct quadrant. More...
|
|
constexpr callable_atan2pi_ | atan2pi = {} |
| Callable object computing the arc tangent in \(\pi\) multiples using the signs of arguments to determine the correct quadrant. More...
|
|
constexpr callable_atand_ | atand = {} |
| Callable object computing arc tangent in degrees. More...
|
|
constexpr callable_atanh_ | atanh = {} |
| Callable object computing \(\frac{1}{2}\log((1+x)/(1-x))\). More...
|
|
constexpr callable_atanpi_ | atanpi = {} |
| Callable object computing arc tangent in \(\pi\) multiples. More...
|
|
constexpr callable_cbrt_ | cbrt = {} |
| Callable object computing the cubic root. More...
|
|
constexpr callable_cos_ | cos = {} |
| Callable object computing the cosine. More...
|
|
constexpr callable_cosd_ | cosd = {} |
| Callable object computing cosine from an input in degrees. More...
|
|
constexpr callable_cosh_ | cosh = {} |
| Callable object computing \(\frac{e^x+e^{-x}}2\). More...
|
|
constexpr callable_cospi_ | cospi = {} |
| Callable object computing the cosine from an input in \(\pi\) multiples. More...
|
|
constexpr callable_cot_ | cot = {} |
| Callable object computing th cotangent. More...
|
|
constexpr callable_cotd_ | cotd = {} |
| Callable object computing cotangent from an input in degrees. More...
|
|
constexpr callable_coth_ | coth = {} |
| Callable object computing \(\frac{e^x+e^{-x}}{e^x-e^{-x}}\). More...
|
|
constexpr callable_cotpi_ | cotpi = {} |
| Callable object computing the arc cotangent from an input in \(\pi\) multiples. More...
|
|
constexpr callable_csc_ | csc = {} |
| Callable object computing the cosecant of the input. More...
|
|
constexpr callable_cscd_ | cscd = {} |
| Callable object computing the cosecant from an input in degree. More...
|
|
constexpr callable_csch_ | csch = {} |
| Callable object computing \(\frac2{e^x+e^{-x}}\). More...
|
|
constexpr callable_cscpi_ | cscpi = {} |
| Callable object computing the cosecant in \(\pi\) multiples. More...
|
|
constexpr callable_deginrad_ | deginrad = {} |
| Callable object multiplying the input by \(\pi/180\). More...
|
|
constexpr callable_exp_ | exp = {} |
| Callable object computing \(e^x\). More...
|
|
constexpr callable_exp10_ | exp10 = {} |
| Callable object computing \(10^x\). More...
|
|
constexpr callable_exp2_ | exp2 = {} |
| Callable object computing \(2^x\). More...
|
|
constexpr callable_expm1_ | expm1 = {} |
| Callable object computing \(e^x-1\). More...
|
|
constexpr callable_expx2_ | expx2 = {} |
| Callable object computing \(e^{\pm x^2}\). More...
|
|
constexpr callable_gd_ | gd = {} |
| Callable object computing the gudermanian gd: \(\int_0^\infty 1/\cosh x dx\). More...
|
|
constexpr callable_geommean_ | geommean = {} |
| Callable object computing the geometric mean of the inputs. \( \left(\prod_{i = 1}^n
x_i\right)^{1/n} \). More...
|
|
constexpr callable_hypot_ | hypot = {} |
| Callable object computing the \(l_2\) norm of its inputs. More...
|
|
constexpr callable_invgd_ | invgd = {} |
| Callable object computing the inverse gudermanian. More...
|
|
constexpr callable_log_ | log = {} |
| Callable object computing the natural logarithm: \(\log x\). More...
|
|
constexpr callable_log10_ | log10 = {} |
| Callable object computing the base 10 logarithm: \(\log_{10} x\). More...
|
|
constexpr callable_log1p_ | log1p = {} |
| Callable object computing the natural logarithm of \(1+x\): \(\log(1+x)\). More...
|
|
constexpr callable_log2_ | log2 = {} |
| Callable object computing the base 2 logarithm: \(\log_2 x\). More...
|
|
constexpr callable_log_abs_ | log_abs = {} |
| Callable object computing the natural logarithm of the absolute value of the input. More...
|
|
constexpr callable_logspace_add_ | logspace_add = {} |
| Callable object computing the logspace_add operation: \(\log\left(\sum_{i = 0}^n
e^{x_i}\right)\). More...
|
|
constexpr callable_logspace_sub_ | logspace_sub = {} |
| Callable object computing the logspace_sub operation: \(\log\left(e^{x_0}-\sum_{i = 1}^n e^{x_i}\right)\). More...
|
|
constexpr callable_lpnorm_ | lpnorm = {} |
| Callable object computing the lpnorm operation \( \left(\sum_{i = 0}^n
|x_i|^p\right)^{\frac1p} \). More...
|
|
constexpr callable_nthroot_ | nthroot = {} |
| Callable object computing the nth root: \(x^{1/n}\). More...
|
|
constexpr callable_pow_ | pow = {} |
| Callable object computing the pow operation \(x^y\). More...
|
|
constexpr callable_pow1p_ | pow1p = {} |
| Callable object computing pow1p: \((1+x)^y\). More...
|
|
constexpr callable_pow_abs_ | pow_abs = {} |
| Callable object computing the pow_abs function \(|x|^y\). More...
|
|
constexpr callable_powm1_ | powm1 = {} |
| Callable object computing powm1: \(x^y-1\). More...
|
|
constexpr callable_quadrant_ | quadrant = {} |
| Callable object computing the quadrant value. More...
|
|
constexpr callable_radindeg_ | radindeg = {} |
| Callable object multiplying the input by \(180/\pi\). More...
|
|
constexpr callable_radinpi_ | radinpi = {} |
| Callable object multiplying the input by \(1/\pi\). More...
|
|
constexpr callable_rempio2_ | rempio2 = {} |
| Callable object computing the remainder of the division by \(\pi/2\). More...
|
|
constexpr callable_sec_ | sec = {} |
| Callable object computing the secant of the input. More...
|
|
constexpr callable_secd_ | secd = {} |
| Callable object computing the secant from an input in degree. More...
|
|
constexpr callable_sech_ | sech = {} |
| Callable object computing \(\frac2{e^x-e^{-x}}\). More...
|
|
constexpr callable_secpi_ | secpi = {} |
| Callable object computing secant from an input in \(\pi\) multiples. More...
|
|
constexpr callable_significants_ | significants = {} |
| Computes the rounding to n significants digits of the first input. More...
|
|
constexpr callable_sin_ | sin = {} |
| Callable object computing the sine. More...
|
|
constexpr callable_sinc_ | sinc = {} |
| Callable object computing the sine cardinal. More...
|
|
constexpr callable_sincos_ | sincos = {} |
| Callable object computing the simultaneous computation of sine an cosine. More...
|
|
constexpr callable_sind_ | sind = {} |
| Callable object computing the sine from an input in degrees. More...
|
|
constexpr callable_sindcosd_ | sindcosd = {} |
| Callable object computing the simultaneous computation of sine an cosine from an argument in degrees. More...
|
|
constexpr callable_sinh_ | sinh = {} |
| Callable object computing \(\frac{e^x-e^{-x}}2\). More...
|
|
constexpr callable_sinhc_ | sinhc = {} |
| Callable object computing \(\frac{e^x-e^{-x}}{2x}\). More...
|
|
constexpr callable_sinhcosh_ | sinhcosh = {} |
| Callable object performing the simultaneous computations of the hyperbolic sine and cosine. More...
|
|
constexpr callable_sinpi_ | sinpi = {} |
| Callable object computing the sine rom an input in \(\pi\) multiples. More...
|
|
constexpr callable_sinpic_ | sinpic = {} |
| Callable object computing the normalized cardinal sine. More...
|
|
constexpr callable_sinpicospi_ | sinpicospi = {} |
| Callable object computing the simultaneous computation of sin an cos from an argument in \(\pi\) multiples. More...
|
|
constexpr callable_tan_ | tan = {} |
| Callable object computing the tangent. More...
|
|
constexpr callable_tand_ | tand = {} |
| Callable object computing the tangent from an input in degrees. More...
|
|
constexpr callable_tanh_ | tanh = {} |
| Callable object computing \(\frac{e^x-e^{-x}}{e^x+e^{-x}}\). More...
|
|
constexpr callable_tanpi_ | tanpi = {} |
| Callable object computing the tangent from an input in \(\pi\) multiples. More...
|
|
constexpr callable_gegenbauer_ | gegenbauer = {} |
| Computes the value of a gegenbauer polynomial \( \mathbf{C}_n^\lambda(x)\). More...
|
|
constexpr callable_hermite_ | hermite = {} |
| Computes the value of the 'physicists' Hermite polynomial of order n at x : More...
|
|
constexpr callable_horner_ | horner = {} |
| Implement the horner scheme to evaluate polynomials/. More...
|
|
constexpr callable_jacobi_ | jacobi = {} |
| Computes the value of the Jacobi polynomials \(P^{\alpha, \beta}_n(x)\). More...
|
|
constexpr callable_laguerre_ | laguerre = {} |
| Computes the value of the Laguerre and associated Laguerre polynomials of order n at x : More...
|
|
constexpr callable_legendre_ | legendre = {} |
| Computes the value of the Legendre and associated Legendre polynomials of order n at x : More...
|
|
constexpr callable_newton_ | newton = {} |
| Implement the Newton scheme to evaluate polynomials. More...
|
|
constexpr callable_reverse_horner_ | reverse_horner = {} |
| implement the horner scheme to evaluate polynomials with coefficients in increasing power order More...
|
|
constexpr callable_tchebeval_ | tchebeval = {} |
| Evaluates a polynomial on the Tchebytchev polynomial basis. More...
|
|
constexpr callable_tchebytchev_ | tchebytchev = {} |
| Computes the value of the Tchebytchev polynomial of order n at x : More...
|
|
constexpr callable_beta_ | beta = {} |
| Computes the beta function: \(\displaystyle \mathbf{B}(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\) is returned. More...
|
|
constexpr callable_betainc_ | betainc = {} |
| Computes the beta incomplete function. \(\displaystyle \mbox{I}_s(x,y) =
\frac{1}{\mbox{B}(x,y)}\int_0^s t^{x-1}(1-t)^{y-1}\mbox{d}t\). More...
|
|
constexpr callable_betainc_inv_ | betainc_inv = {} |
| Computes the inverse relative to the first parameter of the beta incomplete function. More...
|
|
constexpr callable_dawson_ | dawson = {} |
| Computes the Dawson function \(\displaystyle D_+(x)=e^{-x^2}\int_0^{x}
e^{t^2} \mbox{d}t\). More...
|
|
constexpr callable_digamma_ | digamma = {} |
| Computes the Digamma function i.e. the logarithmic derivative of the \(\Gamma\) function. More...
|
|
constexpr callable_double_factorial_ | double_factorial = {} |
| Computes the double factorial of n More...
|
|
constexpr callable_erf_ | erf = {} |
| Computes the error function: \( \displaystyle
\mbox{erf}(x)=\frac{2}{\sqrt\pi}\int_0^{x} e^{-t^2}\mbox{d}t\) or its analytic continuation in the complex plane. More...
|
|
constexpr callable_erf_inv_ | erf_inv = {} |
| Computes the inverse of the error function. More...
|
|
constexpr callable_erfc_ | erfc = {} |
| Computes the complementar error function \( \displaystyle
\mbox{erf}(x)=1-\frac{2}{\sqrt\pi}\int_0^{x} e^{-t^2}\mbox{d}t\). More...
|
|
constexpr callable_erfc_inv_ | erfc_inv = {} |
| Computes the complementar error function \( \displaystyle
\mbox{erf}(x)=1-\frac{2}{\sqrt\pi}\int_0^{x} e^{-t^2}\mbox{d}t\). More...
|
|
constexpr callable_erfcx_ | erfcx = {} |
| Computes the normalized complementary error function \( \displaystyle \mbox{erfcx}(x) = e^{x^2} \mbox{erfc}(x)\). More...
|
|
constexpr callable_exp_int_ | exp_int = {} |
| Computes the exponential integral \( \mathbf{E}_n(x) = \displaystyle \int_1^\infty \frac{e^{-xt}}{t^n}\;\mbox{d}t\). More...
|
|
constexpr callable_factorial_ | factorial = {} |
| Computes \(\displaystyle n! = \prod_{i=1}^n i\). More...
|
|
constexpr callable_gamma_p_ | gamma_p = {} |
| Computes the normalized lower incomplete \(\Gamma\) function. More...
|
|
constexpr callable_gamma_p_inv_ | gamma_p_inv = {} |
| Computes the inverse of the normalized lower incomplete \(\Gamma\) function. More...
|
|
constexpr callable_lambert_ | lambert = {} |
| Computes the inverse of the function \( x \rightarrow xe^x \). More...
|
|
constexpr callable_lbeta_ | lbeta = {} |
| Computes the natural logarithm of the beta function. More...
|
|
constexpr callable_lfactorial_ | lfactorial = {} |
| Computes the natural logarithm of the factorial of unsigned integer values \(\displaystyle \log n! = \sum_{i=1}^n \log i\). More...
|
|
constexpr callable_log_abs_gamma_ | log_abs_gamma = {} |
| Computes the natural logarithm of the absolute value of the \(\Gamma\) function. More...
|
|
constexpr callable_log_gamma_ | log_gamma = {} |
| Computes the natural logarithm of the \(\Gamma\) function. More...
|
|
constexpr callable_lrising_factorial_ | lrising_factorial = {} |
| Computes the natural logarithm of the Rising Factorial function i.e. \(\log\left(\frac{\Gamma(x+a)}{\Gamma(x)}\right)\). More...
|
|
constexpr callable_omega_ | omega = {} |
| Computes the the Wright \(\omega\) the inverse function of \( x \rightarrow \log
x+x\). More...
|
|
constexpr callable_rising_factorial_ | rising_factorial = {} |
| Computes the Rising Factorial function i.e. \(\frac{\Gamma(x+a)}{\Gamma(x)}\). More...
|
|
constexpr callable_signgam_ | signgam = {} |
| Computes the sign of the \(\Gamma\) function. More...
|
|
constexpr callable_stirling_ | stirling = {} |
| Computes the Stirling approximation of the \(\Gamma\) function. More...
|
|
constexpr callable_tgamma_ | tgamma = {} |
| Computes \(\displaystyle \Gamma(x)=\int_0^\infty t^{x-1}e^{-t}\mbox{d}t\) or its analytic continuation in the complex plane. More...
|
|
constexpr callable_zeta_ | zeta = {} |
| Computes the Riemann \(\zeta\) function. More...
|
|
constexpr std::ptrdiff_t | na_ = -1 |
| Tag for zeroing swizzle index.
|
|
template<std::ptrdiff_t... I> |
constexpr auto | pattern = pattern_t<I...>{} |
| Generate a shuffling pattern.
|
|
template<typename T > |
constexpr std::size_t | max_scalar_size_v = kumi::max_flat(T{}, [](auto m) { return sizeof(m); }) |
| A meta function for getting a maximum size of scalar. More...
|
|