Deterministic
Disappointment

Niall Douglas

Contents:

1. What is disappointment?

2. What is determinism?

3. The direction of C++

4. Future disappointment in C++?

5. Achieving the future today
a. C++ 11 <system _error>
b. C++ 11 P1028 SG14 status_code
c. C++ 14 (Boost.) Outcome

What is disappointment?

Aspects of disappointment

e Used in wide, not narrow contracts
o OR, in wide->to->narrow contracting!

e Programmer anticipated (i.e. likely) failure
handled differently to programmer
unanticipated (i.e. exceptional) failure

e Current best practice for new C++ code
bases e.g. Filesystem, Networking

bool std::

bool std::

filesystem:
const std:
const std:

filesystem:
const std:
const std:

:copy _file(
:filesystem
:filesystem

:copy _file(
:filesystem

filesystem

std::error_code &ec);

: :path &from,

: :path &to);

: :path &from,

: :path &to,

What is determinism?

Determinism

e NOT, | repeat NOT, amortised predictability
e NOT, | repeat NOT, median or mean

Has a very specific meaning:

1. Worst possible execution in time or space
2. OR worst possible execution at 2 - 5 sigma

(~95%, ~99%, ~99.99%, ~99.9999%)

8

ion of RAM on Haswell

\[I,‘\“M g \“ N _\‘ il }\

120
110
100

90

o
@
|
)
=
=
=
=
=
>
o
)
=
@
S
i)
X
<t
=
O
)
=
®©
14

o

<

i i
SpuoJasou

©

N

103 ns
108 ns
= 3111 ns

20 95% <

30 99% <
40 99.99% <= 184 ns

50 99.9999% <

Median = 94 ns, Mean = 95 ns

i
o o
< ™
i i
spuolasoueN

(]
N
—

The Direction of C++

by Beman, Howard, Bjarne, Daveed & Michael

https://wg21.link/P0939 quote 1:

“C++ rests on two pillars:

e A direct map to hardware
e /Zero-overhead abstraction in production
code”

“Depart from those and the language is no
longer C++”

11

https://wg21.link/P0939

https://wg21.link/P0939 quote 2:

“Over the long term, we must strengthen
these two pillars:

e Better support for modern hardware

e More expressive, simpler, and safer
abstraction mechanisms (without added
overhead)”

12

https://wg21.link/P0939

Future disappointment in
C++?

History of C++ exceptions

e Added to Cfront in 1992 by HP

o After much consensus building!

e The following assumptions were made for
the design:

o Are used primarily for (abort, not resume) error
handling

o Are rare compared to function definitions

o Occur infrequently compared to function calls

14

History of C++ exceptions

e “Zero overhead” in the successful code

path except for:
o Inhibits code folding by the optimiser
m Increased CPU cache loading
o Adds 15-38% to final binary size due to EH tables
m Games, embedded folk simply disable
exceptions altogether

e And hideously slow for the throw-catch!

15

Cost of returning error up ten stack frames on x64

100000

10000

1000

100

Total CPU cycles

10

Minteger-returns Mresult-error-value Mresult-error-error exception-throw

History of C++ exceptions

e Lots of C++ coding guidelines ban their use

o Value added not worth their cost in terms of
maintenance, extra testing, and bugs introduced

e End up with lots of C++ incompatible with
lots of other C++ due to lack of exception
safety

o Can’t use STL in games
o Can’t allow exceptions to pass through Qt

17

P0709: Zero overhead
deterministic exceptions -
Throwing values

by Herb
https://wg2l1.1ink/P0709

https://wg21.link/P0709

P0709 Zero overhead exceptions

e New alternative exception mechanism

o Value-based in addition to type-based

o Value throws are always of : cerror which is
defined to be no more than two CPU registers in
size (note : :error_code exactly ticks this box)

e (Code can throw exceptions via old or new

NEGERINE
o Required for backwards binary compatibility

19

P0709 Zero overhead exceptions

e The “non-recoverable” exceptions
: :bad_alloc, : :logic_error efc

become default process terminating

e Anywhere in the STL which was not
noexcept due to potential bad _alloc,
logic_error etc becomes noexcept

o : :error_code& overloads in standard
library get deprecated)

20

int safe_divide(int i, int j) {

if (j == 0)
throw arithmetic_errc::divide by zero;
if (i == INT_MIN &% j == -1)

throw arithmetic_errc::integer _divide overflows;
if (1% j 1= 0)

throw arithmetic_errc::not_integer division;
else return i / j;

¥

double caller(double i, double j, double k) {
return 1 + safe_divide(j, k);

}

int caller2(int i, int j) { // no throws!

try {
return safe _divide(i, j);

} catch(error e) {

if (e == std::errc::result out _of _range)
return 0;

if (e == std::errc::invalid_argument)
return 1 / j; // ignore

if (e == std::errc::argument _out of domain)

return INT_MIN;
throw std::system error(e); // Throw as type-based

¥

Summary

e Opt-in value-based throws replace EH table

bloat with fatter, cache heavier, code
o BUT which is more optimisable, foldable, etc

e Makes the STL much less “throwey”
o Becomes useful to exceptions-disabled users

e Exception throws become as lightweight as

control flow
o BUT still comes with control flow inversion

23

P1095R0/N2289: Zero overhead
deterministic failure - A unified
mechanism for C and C++

by Niall (me)
https://wg21.1ink/P1095

https://wg21.link/P1095

P1095 Zero overhead failure

“A proposed universal mechanism for enabling
C speaking programming languages to tell C
code, and potentially one another, about
failure and disappointment”

e One possible implementation of PO709
e |Implements the value-based exception
throw mechanism into the C language

25

P1095 Zero overhead failure

e For C functions marked fails(), calling

convention changes to:

o Return union of declared function return type T
and failure type

o Discriminant is returned via some
architecture-specific lightweight mechanism
m E.g. CPU carry flag

o Fails-functions must be explicitly called with
catch(...) or try(...)

26

P1095 Zero overhead failure

e There is a boilerplate expansion
fails errno which causes the setting of
errno to be returned via fails(

) instead
o This enables lots of currently impure C and POSIX
functions to be marked pure e.g.
o Improves math code optimisation significantly
o This neatly sidesteps a major problem before WG21

for the last four years
27

P1095 Zero overhead failure

e In C++, functions may be marked throws,
throws(), fails(), noexcept or
nothing

o fails() functions require explicit calls of
throws/fails functions via try(...) and
catch(...) - solves the flow inversion problem!

o throws functions silently inject a try(...) around
any calls of throws/fails functions if not otherwise
specified

28

int safe divide(int i, int j) {

if (J == o)
return failure(divide by zero);
if (i == INT_MIN &% j == -1)

return failure(integer divide_ overflows);
if (1% j 1= 09)

return failure(not_integer division);
else return 1 / j;

}
double caller(double i, double j, double k)
{
return i + try(safe_divide(j, k));
}

int caller2(int i, int j) {
struct {
union { int value; arithmetic_errc error; };
_Bool failed;
} r = catch(safe_divide(i, j));
if(!r.failed)
return r.value;

if(r.error == divide by zero)
return 0;

if(r.error == integer_divide overflows)
return 1 / j; // ignore

if(r.error == not_integer division)

return INT_MIN;
}

Summary

e One possible implementation of P0709

e Solves a few very long standing problems in
C and POSIX at once

e Finally enables C code to call C++ code

without exception translation wrappers!
o Which means Rust, Python etc also can call C++
code directly without wrappers!

o Also C++ can send exceptions to/from C!
31

Achieving the future
today

C++ 11 <system_error>

e Probably the most commonly used STL

header nobody has heard of

o Provides the “advanced” error and exception
infrastructure

o Makes up ~20% of the tokens of many other STL
headers e.g. <array>, <complex>, <optional>

e For deterministic disappointment, we only
care about a subset ...

34

C++ 11 <system_error>

O

O

: :error_code
Integer + reference to explanatory category
::errc
enum of POSIX’s common causes of failure
: :generic_category()
Category for :1errc
: :system_category()
Category for host system causes of failure
: :system_error()

Exception type for throwing a : :error_code
35

std::error_code write(const char *buffer, size t bytes) {

do {
ssize t thiswrite = ::write(fd, buffer, bytes); // disappoint?
if(thiswrite >= @) { buffer += thiswrite; bytes -= thiswrite; }
else if(EAGAIN != errno) { // Handle this locally (retry)

std::error_code ec(errno, std::system category());

// Anticipated disappointment (part of control flow)

if(ENOSPC == errno || EACCES == errno)

return ec;
// Unanticipated disappointment (abort and unwind stack)
throw std::system _error(ec);
}

} while(bytes > 0);
return {}; // default error code has convention of "no error here"

}

P1028: SG14 status_code and
standard error object for PO709
Zero-overhead deterministic

exceptions

by Niall (me) and SG14
https://wg2l1.1ink/P1028
https://nedl4.github.io/status-code/

https://wg21.link/P1028
https://ned14.github.io/status-code/

P1028 SG14 status_code

Solves a long list of minor issues with

<system error> (see https://wg21.link/P0824)
o As have become apparent only in hindsight

Much nicer codegen than <system error>
Doesn’t drag in most of the STL as includes
like <system_error>

Exceptions-disabled friendly

38

https://wg21.link/P0824

P1028 SG14 status_code

Implements a proposed : :error for
PO709 Zero overhead deterministic
exceptions which is built on by P1095 Zero
overhead deterministic failure

Works in any C++ 11 compiler
o >=GCC5, >= clang 3.3, >= V52015

But NOTE that though approved
unanimously by SG14, has not been judged
by LEWG yet!

39

(Boost.) Outcome

by Niall (me)
https://nedl4.github.io/outcome/

https://ned14.github.io/outcome/

(Boost.) Outcome

First new vocabulary library in Boost in
many years!

Only a year and a complete rewrite to get
past Boost peer review!

Probably consumed about 3,500 hours of my
time over four years, tens of thousands of
hours if including all effort invested by
everybody

41

(Boost.) Outcome

e Lets you set per-namespace rules about

local deterministic error handling

o How and when local failure ought to be converted
to exception throws

o How local error handling ought to interact with
third party or unknown local error handling

o How payload ought to be lazily/eagerly converted
when transitioning from this local error handling to

other forms of error handling
42

(Boost.) Outcome

e Can completely substitute for C++
exceptions in a library or executable

O
O
O

Is deterministic

Is very lightweight, both at compile and runtime
Works well over arbitrary, unknown, third party
libraries each with their own custom local
implementations

Works fine with C++ exceptions globally disabled
Looks very like Rust/Swift/Go error handling

43

(Boost.) Outcome

Unsurprisingly it is essentially a library
implementation of P1095R0/N2289: Zero
overhead deterministic failure - A unified

mechanism for C and C++

o C++ 14 minimum, C++ 20 preferred
o >=clang 4.0.1, >= GCC 6.3, >= VS2017

But can work with : cerror_code, 5SG14
status_code, Boost, or your custom type

44

Without Outcome

int open file(const std::filesystem::path &p,
std::error_code &ec) noexcept {
if(p.empty()) {
ec = make_error_code(std::errc::invalid _argument);
return -1;

}

ec.clear(); // surprisingly easy to forget to do
int fd = ::open(p.c_str(), O RDONLY);

if(fd >= 09)

return fd;
ec = { errno, std::system_category() };
return -1;

std: :error_code ec;
int fd = open_file(path, ec);
if(-1 == fd) // lots of people incorrectly write if(ec) here
{
std::cerr << "Failed to open path due to
<< ec.message() << std::endl;

abort();

}
ssize t bytesread = ::read(fd, buffer, bytes);

With Outcome

result<int> open file(const std::filesystem::path &p) noexcept

{
if(p.empty())
return std::errc::invalid_argument;

int fd = ::open(p.c_str(), O RDONLY);
if(fd >= 0)

return fd;
return { errno, std::system category() };

¥

auto fd = open_file(path);
if(! _fd)
{
std::cerr << "Failed to open path due to "
<< _fd.error().message() << std::endl;

abort();

}
int fd = fd.value();

ssize t bytesread = ::read(fd, buffer, bytes);

// If it failed, throw its .error() as a std::system error
int fd = open_file(path).value();
ssize t bytesread = ::read(fd, buffer, bytes);

Thank you

And let the questions begin!

https://nedl4.github.io/outcome/
https://www.linkedin.com/in/nialldouglas/

Available January 2019, >= 90% REMOTE only

https://ned14.github.io/outcome/
https://www.linkedin.com/in/nialldouglas/

