
Deterministic
Disappointment

Niall Douglas

Contents:
1. What is disappointment?
2. What is determinism?
3. The direction of C++
4. Future disappointment in C++?
5. Achieving the future today

a. C++ 11 <system_error>
b. C++ 11 P1028 SG14 status_code
c. C++ 14 (Boost.) Outcome

2

What is disappointment?

Aspects of disappointment

● Used in wide, not narrow contracts
○ OR, in wide->to->narrow contracting!

● Programmer anticipated (i.e. likely) failure
handled differently to programmer
unanticipated (i.e. exceptional) failure

● Current best practice for new C++ code
bases e.g. Filesystem, Networking

4

5

// Disappoints via exception_throw. Always returns true.

bool std::filesystem::copy_file(

 const std::filesystem::path &from,

 const std::filesystem::path &to);

// Disappoints via error_code for anticipated failure,

// returning false. Disappoints via exception throw for

// unanticipated failure.

bool std::filesystem::copy_file(

 const std::filesystem::path &from,

 const std::filesystem::path &to,

 std::error_code &ec);

What is determinism?

Determinism

● NOT, I repeat NOT, amortised predictability
● NOT, I repeat NOT, median or mean

Has a very specific meaning:
1. Worst possible execution in time or space
2. OR worst possible execution at 2 - 5 sigma

(~95%, ~99%, ~99.99%, ~99.9999%)
7

8Random 4Kb memcpy in 100Mb region of RAM on Haswell

9

Median = 94 ns, Mean = 95 ns
2σ 95% <= 103 ns
3σ 99% <= 108 ns

4σ 99.99% <= 184 ns
5σ 99.9999% <= 3111 ns

The Direction of C++
by Beman, Howard, Bjarne, Daveed & Michael

https://wg21.link/P0939 quote 1:

“C++ rests on two pillars:
● A direct map to hardware
● Zero-overhead abstraction in production

code”

“Depart from those and the language is no
longer C++”

11

https://wg21.link/P0939

https://wg21.link/P0939 quote 2:

“Over the long term, we must strengthen
these two pillars:

● Better support for modern hardware
● More expressive, simpler, and safer

abstraction mechanisms (without added
overhead)”

12

https://wg21.link/P0939

Future disappointment in
C++?

History of C++ exceptions

● Added to Cfront in 1992 by HP
○ After much consensus building!

● The following assumptions were made for
the design:
○ Are used primarily for (abort, not resume) error

handling
○ Are rare compared to function definitions
○ Occur infrequently compared to function calls

14

History of C++ exceptions

● “Zero overhead” in the successful code
path except for:
○ Inhibits code folding by the optimiser

■ Increased CPU cache loading
○ Adds 15-38% to final binary size due to EH tables

■ Games, embedded folk simply disable
exceptions altogether

● And hideously slow for the throw-catch!
15

16

History of C++ exceptions

● Lots of C++ coding guidelines ban their use
○ Value added not worth their cost in terms of

maintenance, extra testing, and bugs introduced
● End up with lots of C++ incompatible with

lots of other C++ due to lack of exception
safety
○ Can’t use STL in games
○ Can’t allow exceptions to pass through Qt

17

P0709: Zero overhead
deterministic exceptions -

Throwing values

by Herb
https://wg21.link/P0709

https://wg21.link/P0709

P0709 Zero overhead exceptions

● New alternative exception mechanism
○ Value-based in addition to type-based
○ Value throws are always of std::error which is

defined to be no more than two CPU registers in
size (note std::error_code exactly ticks this box)

● Code can throw exceptions via old or new
mechanisms
○ Required for backwards binary compatibility

19

P0709 Zero overhead exceptions
● The “non-recoverable” exceptions

std::bad_alloc, std::logic_error etc
become default process terminating

● Anywhere in the STL which was not
noexcept due to potential bad_alloc,
logic_error etc becomes noexcept

● (std::error_code& overloads in standard
library get deprecated)

20

21

int safe_divide(int i, int j) throws {

 if (j == 0)

 throw arithmetic_errc::divide_by_zero;

 if (i == INT_MIN && j == -1)

 throw arithmetic_errc::integer_divide_overflows;

 if (i % j != 0)

 throw arithmetic_errc::not_integer_division;

 else return i / j;

}

double caller(double i, double j, double k) throws {

 return i + safe_divide(j, k);

}

22

int caller2(int i, int j) { // no throws!

 try {

 return safe_divide(i, j);

 } catch(error e) {

 if (e == std::errc::result_out_of_range)

 return 0;

 if (e == std::errc::invalid_argument)

 return i / j; // ignore

 if (e == std::errc::argument_out_of_domain)

 return INT_MIN;

 throw std::system_error(e); // Throw as type-based

 }

}

Summary

● Opt-in value-based throws replace EH table
bloat with fatter, cache heavier, code
○ BUT which is more optimisable, foldable, etc

● Makes the STL much less “throwey”
○ Becomes useful to exceptions-disabled users

● Exception throws become as lightweight as
control flow
○ BUT still comes with control flow inversion

23

P1095R0/N2289: Zero overhead
deterministic failure - A unified

mechanism for C and C++

by Niall (me)
https://wg21.link/P1095

https://wg21.link/P1095

P1095 Zero overhead failure

“A proposed universal mechanism for enabling
C speaking programming languages to tell C
code, and potentially one another, about

failure and disappointment”
● One possible implementation of P0709
● Implements the value-based exception

throw mechanism into the C language
25

P1095 Zero overhead failure

● For C functions marked fails(E), calling
convention changes to:
○ Return union of declared function return type T

and failure type E
○ Discriminant is returned via some

architecture-specific lightweight mechanism
■ E.g. CPU carry flag

○ Fails-functions must be explicitly called with
catch(...) or try(...)

26

P1095 Zero overhead failure
● There is a boilerplate expansion

fails_errno which causes the setting of
errno to be returned via fails(struct {
T; int; }) instead
○ This enables lots of currently impure C and POSIX

functions to be marked pure e.g. <tgmath.h>
○ Improves math code optimisation significantly
○ This neatly sidesteps a major problem before WG21

for the last four years
27

P1095 Zero overhead failure
● In C++, functions may be marked throws,

throws(E), fails(E), noexcept or
nothing
○ fails(E) functions require explicit calls of

throws/fails functions via try(...) and
catch(...) - solves the flow inversion problem!

○ throws functions silently inject a try(...) around
any calls of throws/fails functions if not otherwise
specified

28

29

int safe_divide(int i, int j) fails(arithmetic_errc) {

 if (j == 0)

 return failure(divide_by_zero);

 if (i == INT_MIN && j == -1)

 return failure(integer_divide_overflows);

 if (i % j != 0)

 return failure(not_integer_division);

 else return i / j;

}

double caller(double i, double j, double k) fails(arithmetic_errc)

{

 return i + try(safe_divide(j, k));

}

30

int caller2(int i, int j) {

 struct {

 union { int value; arithmetic_errc error; };

 _Bool failed;

 } r = catch(safe_divide(i, j));

 if(!r.failed)

 return r.value;

 if(r.error == divide_by_zero)

 return 0;

 if(r.error == integer_divide_overflows)

 return i / j; // ignore

 if(r.error == not_integer_division)

 return INT_MIN;

}

Summary

● One possible implementation of P0709
● Solves a few very long standing problems in

C and POSIX at once
● Finally enables C code to call C++ code

without exception translation wrappers!
○ Which means Rust, Python etc also can call C++

code directly without wrappers!
○ Also C++ can send exceptions to/from C!

31

Achieving the future
today

C++ 11 <system_error>

C++ 11 <system_error>

● Probably the most commonly used STL
header nobody has heard of
○ Provides the “advanced” error and exception

infrastructure
○ Makes up ~20% of the tokens of many other STL

headers e.g. <array>, <complex>, <optional>
● For deterministic disappointment, we only

care about a subset …
34

C++ 11 <system_error>
● std::error_code

○ Integer + reference to explanatory category
● std::errc

○ enum of POSIX’s common causes of failure
● std::generic_category()

○ Category for std::errc
● std::system_category()

○ Category for host system causes of failure
● std::system_error()

○ Exception type for throwing a std::error_code
35

36

std::error_code write(const char *buffer, size_t bytes) {

 do {

 ssize_t thiswrite = ::write(fd, buffer, bytes); // disappoint?

 if(thiswrite >= 0) { buffer += thiswrite; bytes -= thiswrite; }

 else if(EAGAIN != errno) { // Handle this locally (retry)

 std::error_code ec(errno, std::system_category());

 // Anticipated disappointment (part of control flow)

 if(ENOSPC == errno || EACCES == errno)

 return ec;

 // Unanticipated disappointment (abort and unwind stack)

 throw std::system_error(ec);

 }

 } while(bytes > 0);

 return {}; // default error code has convention of "no error here"

}

P1028: SG14 status_code and
standard error object for P0709

Zero-overhead deterministic
exceptions

by Niall (me) and SG14
https://wg21.link/P1028

https://ned14.github.io/status-code/

https://wg21.link/P1028
https://ned14.github.io/status-code/

P1028 SG14 status_code

● Solves a long list of minor issues with
<system_error> (see https://wg21.link/P0824)
○ As have become apparent only in hindsight

● Much nicer codegen than <system_error>
● Doesn’t drag in most of the STL as includes

like <system_error>
● Exceptions-disabled friendly

38

https://wg21.link/P0824

P1028 SG14 status_code
● Implements a proposed std::error for

P0709 Zero overhead deterministic
exceptions which is built on by P1095 Zero
overhead deterministic failure

● Works in any C++ 11 compiler
○ >= GCC 5, >= clang 3.3, >= VS2015

● But NOTE that though approved
unanimously by SG14, has not been judged
by LEWG yet! 39

(Boost.) Outcome

by Niall (me)
https://ned14.github.io/outcome/

https://ned14.github.io/outcome/

(Boost.) Outcome
● First new vocabulary library in Boost in

many years!
● Only a year and a complete rewrite to get

past Boost peer review!
● Probably consumed about 3,500 hours of my

time over four years, tens of thousands of
hours if including all effort invested by
everybody

41

(Boost.) Outcome

● Lets you set per-namespace rules about
local deterministic error handling
○ How and when local failure ought to be converted

to exception throws
○ How local error handling ought to interact with

third party or unknown local error handling
○ How payload ought to be lazily/eagerly converted

when transitioning from this local error handling to
other forms of error handling

42

(Boost.) Outcome

● Can completely substitute for C++
exceptions in a library or executable
○ Is deterministic
○ Is very lightweight, both at compile and runtime
○ Works well over arbitrary, unknown, third party

libraries each with their own custom local
implementations

○ Works fine with C++ exceptions globally disabled
○ Looks very like Rust/Swift/Go error handling

43

(Boost.) Outcome

● Unsurprisingly it is essentially a library
implementation of P1095R0/N2289: Zero
overhead deterministic failure - A unified
mechanism for C and C++
○ C++ 14 minimum, C++ 20 preferred
○ >= clang 4.0.1, >= GCC 6.3, >= VS2017

● But can work with std::error_code, SG14
status_code, Boost, or your custom type

44

Without Outcome

46

int open_file(const std::filesystem::path &p,

 std::error_code &ec) noexcept {

 if(p.empty()) {

 ec = make_error_code(std::errc::invalid_argument);

 return -1;

 }

 ec.clear(); // surprisingly easy to forget to do

 int fd = ::open(p.c_str(), O_RDONLY);

 if(fd >= 0)

 return fd;

 ec = { errno, std::system_category() };

 return -1;

}

47

std::error_code ec;

int fd = open_file(path, ec);

if(-1 == fd) // lots of people incorrectly write if(ec) here

{

 std::cerr << "Failed to open path due to "

 << ec.message() << std::endl;

 abort();

}

ssize_t bytesread = ::read(fd, buffer, bytes);

With Outcome

49

result<int> open_file(const std::filesystem::path &p) noexcept

{

 if(p.empty())

 return std::errc::invalid_argument;

 int fd = ::open(p.c_str(), O_RDONLY);

 if(fd >= 0)

 return fd;

 return { errno, std::system_category() };

}

50

auto _fd = open_file(path);

if(!_fd)

{

 std::cerr << "Failed to open path due to "

 << _fd.error().message() << std::endl;

 abort();

}

int fd = _fd.value();

ssize_t bytesread = ::read(fd, buffer, bytes);

51

// If it failed, throw its .error() as a std::system_error

int fd = open_file(path).value();

ssize_t bytesread = ::read(fd, buffer, bytes);

Thank you
And let the questions begin!

https://ned14.github.io/outcome/

https://www.linkedin.com/in/nialldouglas/

Available January 2019, >= 90% REMOTE only

https://ned14.github.io/outcome/
https://www.linkedin.com/in/nialldouglas/

