
Lie Groups for Beginners

Frank Dellaert

February 7, 2016

1



1 Motivation: Rigid Motions in the Plane
We will start with a small example of a robot moving in a plane, parameterized by a 2D pose
(x, y, θ). When we give it a small forward velocity vx, we know that the location changes as

ẋ = vx

The solution to this trivial differential equation is, with x0 the initial x-position of the robot,

xt = x0 + vxt

A similar story holds for translation in the y direction, and in fact for translations in general:

(xt , yt , θt) = (x0 + vxt, y0 + vyt, θ0)

Similarly for rotation we have

(xt , yt , θt) = (x0, y0, θ0 +ωt)

where ω is angular velocity, measured in rad/s in counterclockwise direction.

Figure 1: Robot moving along a circular trajectory.

However, if we combine translation and rotation, the story breaks down! We cannot write

(xt , yt , θt) = (x0 + vxt, y0 + vyt, θ0 +ωt)

2



The reason is that, if we move the robot a tiny bit according to the velocity vector (vx, vy, ω), we
have (to first order)

(xδ , yδ , θδ ) = (x0 + vxδ , y0 + vyδ , θ0 +ωδ )

but now the robot has rotated, and for the next incremental change, the velocity vector would have
to be rotated before it can be applied. In fact, the robot will move on a circular trajectory.

The reason is that translation and rotation do not commute: if we rotate and then move we will
end up in a different place than if we moved first, then rotated. In fact, someone once said (I forget
who, kudos for who can track down the exact quote):

If rotation and translation commuted, we could do all rotations before leaving home.

Figure 2: Approximating a circular trajectory with n steps.

To make progress, we have to be more precise about how the robot behaves. Specifically, let us
define composition of two poses T1 and T2 as

T1T2 = (x1, y1, θ1)(x2, y2, θ2) = (x1 + cosθ1x2− sinθy2, y1 + sinθ1x2 + cosθ1y2, θ1 +θ2)

This is a bit clumsy, so we resort to a trick: embed the 2D poses in the space of 3×3 matrices, so
we can define composition as matrix multiplication:

T1T2 =

[
R1 t1
0 1

][
R2 t2
0 1

]
=

[
R1R2 R1t2 + t1

0 1

]
where the matrices R are 2D rotation matrices defined as

R =

[
cosθ −sinθ

sinθ cosθ

]
3



Now a “tiny” motion of the robot can be written as

T (δ ) =

 cosωδ −sinωδ vxδ

sinωδ cosωδ vyδ

0 0 1

≈
 1 −ωδ vxδ

ωδ 1 vyδ

0 0 1

= I +δ

 0 −ω vx
ω 0 vy
0 0 0


Let us define the 2D twist vector ξ = (v,ω), and the matrix above as

ξ̂
∆
=

 0 −ω vx
ω 0 vy
0 0 0


If we wanted t to be large, we could split up t into smaller timesteps, say n of them, and compose
them as follows:

T (t)≈
(

I +
t
n

ξ̂

)
. . .n times . . .

(
I +

t
n

ξ̂

)
=
(

I +
t
n

ξ̂

)n

The result is shown in Figure 2.
Of course, the perfect solution would be obtained if we take n to infinity:

T (t) = lim
n→∞

(
I +

t
n

ξ̂

)n

For real numbers, this series is familiar and is actually a way to compute the exponential function:

ex = lim
n→∞

(
1+

x
n

)n
=

∞

∑
k=0

xk

k!

The series can be similarly defined for square matrices, and the final result is that we can write the
motion of a robot along a circular trajectory, resulting from the 2D twist ξ = (v,ω) as the matrix
exponential of ξ̂ :

T (t) = etξ̂ ∆
= lim

n→∞

(
I +

t
n

ξ̂

)n
=

∞

∑
k=0

tk

k!
ξ̂

k

We call this mapping from 2D twists matrices ξ̂ to 2D rigid transformations the exponential map.
The above has all elements of Lie group theory. We call the space of 2D rigid transformations,

along with the composition operation, the special Euclidean group SE(2). It is called a Lie group
because it is simultaneously a topological group and a manifold, which implies that the multipli-
cation and the inversion operations are smooth. The space of 2D twists, together with a special
binary operation to be defined below, is called the Lie algebra se(2) associated with SE(2).

4



2 Basic Lie Group Concepts
We now define the concepts illustrated above, introduce some notation, and see what we can say in
general. After this we then introduce the most commonly used Lie groups and their Lie algebras.

2.1 A Manifold and a Group
A Lie group G is both a group and a manifold that possesses a smooth group operation. Associated
with it is a Lie Algebra g which, loosely speaking, can be identified with the tangent space at the
identity and completely defines how the groups behaves around the identity. There is a mapping
from g back to G, called the exponential map

exp : g→ G

which is typically a many-to-one mapping. The corresponding inverse can be define locally around
the origin and hence is a “logarithm”

log : G→ g

that maps elements in a neighborhood of id in G to an element in g.
An important family of Lie groups are the matrix Lie groups, whose elements are n×n invert-

ible matrices. The set of all such matrices, together with the matrix multiplication, is called the
general linear group GL(n) of dimension n, and any closed subgroup of it is a matrix Lie group.
Most if not all Lie groups we are interested in will be matrix Lie groups.

2.2 Lie Algebra
The Lie Algebra g is called an algebra because it is endowed with a binary operation, the Lie
bracket [X ,Y ], the properties of which are closely related to the group operation of G. For example,

for algebras associated with matrix Lie groups, the Lie bracket is given by [A,B] ∆
= AB−BA.

The relationship of the Lie bracket to the group operation is as follows: for commutative Lie
groups vector addition X +Y in g mimicks the group operation. For example, if we have Z = X +Y
in g, when mapped backed to G via the exponential map we obtain

eZ = eX+Y = eX eY

However, this does not hold for non-commutative Lie groups:

Z = log(eX eY ) 6= X +Y

Instead, Z can be calculated using the Baker-Campbell-Hausdorff (BCH) formula[1]:

Z = X +Y +[X ,Y ]/2+[X−Y, [X ,Y ]]/12− [Y, [X , [X ,Y ]]]/24+ . . .

For commutative groups the bracket is zero and we recover Z = X +Y . For non-commutative
groups we can use the BCH formula to approximate it.

5



2.3 Exponential Coordinates
For n-dimensional matrix Lie groups, as a vector space the Lie algebra g is isomorphic to Rn, and
we can define the hat operator [4, page 41],

ˆ: x ∈ Rn→ x̂ ∈ g

which maps n-vectors x ∈ Rn to elements of g. In the case of matrix Lie groups, the elements x̂ of
g are also n×n matrices, and the map is given by

x̂ =
n

∑
i=1

xiGi (1)

where the Gi are n× n matrices known as Lie group generators. The meaning of the map x→ x̂
will depend on the group G and will generally have an intuitive interpretation.

2.4 Actions
An important concept is that of a group element acting on an element of a manifold M. For
example, 2D rotations act on 2D points, 3D rotations act on 3D points, etc. In particular, a left
action of G on M is defined as a smooth map Φ : G×M→M such that [4, Appendix A]:

1. The identity element e has no effect, i.e., Φ(e, p) = p

2. Composing two actions can be combined into one action: Φ(g,Φ(h, p)) = Φ(gh, p)

The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn,

q = Ap

with p,q ∈ Rn and A ∈ G⊆ GL(n).

2.5 The Adjoint Map and Adjoint Representation
Suppose a point p is specified as p′ in the frame T , i.e., p′ = T p, where T transforms from the
global coordinates p to the local frame p′. To apply an action A we first need to undo T , then apply
A, and then transform the result back to T :

q′ = TAT−1 p′

The matrix TAT−1 is said to be conjugate to A, and this is a central element of group theory.
In general, the adjoint map Adg maps a group element a ∈ G to its conjugate gag−1 by g.

This map captures conjugacy in the group G, but there is an equivalent notion in the Lie algebra g,

Adgex̂ = gexp(x̂)g−1 = exp(Adgx̂)

where Adg : g→ g is a map parameterized by a group element g, and is called the adjoint repre-
sentation. The intuitive explanation is that a change exp(x̂) defined around the origin, but applied
at the group element g, can be written in one step by taking the adjoint Adgx̂ of x̂.

6



In the special case of matrix Lie groups the adjoint can be written as

AdT x̂ ∆
= T x̂T−1

and hence we have

Tex̂T−1 = eT x̂T−1
(2)

where both T ∈ G and x̂ ∈ g are n×n matrices for an n-dimensional Lie group.

7



3 2D Rotations
We first look at a very simple group, the 2D rotations.

3.1 Basics
The Lie group SO(2) is a subgroup of the general linear group GL(2) of 2×2 invertible matrices.
Its Lie algebra so(2) is the vector space of 2× 2 skew-symmetric matrices. Since SO(2) is a
one-dimensional manifold, so(2) is isomorphic to R and we define

ˆ: R→ so(2)

ˆ: ω → ω̂ = [ω]+

which maps the angle ω to the 2×2 skew-symmetric matrix [ω]+:

[ω]+ =

[
0 −ω

ω 0

]
The exponential map can be computed in closed form as

e[ω]+ =

[
cosω −sinω

sinω cosω

]
3.2 Diagonalized Form

The matrix [1]+ can be diagonalized (see [1]) with eigenvalues −i and i , and eigenvectors
[

1
i

]
and

[
i
1

]
. Readers familiar with projective geometry will recognize these as the circular points

when promoted to homogeneous coordinates. In particular:

[ω]+ =

[
0 −ω

ω 0

]
=

[
1 i
i 1

][
−iω 0

0 iω

][
1 i
i 1

]−1

and hence

e[ω]+ =
1
2

[
1 i
i 1

][
e−iω 0

0 eiω

][
1 −i
−i 1

]
=

[
cosω −sinω

sinω cosω

]
where the latter can be shown using eiω = cosω + isinω .

3.3 Adjoint
The adjoint for so(2) is trivially equal to the identity, as is the case for all commutative groups:

AdRω̂ =

[
cosθ −sinθ

sinθ cosθ

][
0 −ω

ω 0

][
cosθ −sinθ

sinθ cosθ

]T

= ω

[
−sinθ −cosθ

cosθ −sinθ

][
cosθ sinθ

−sinθ cosθ

]
=

[
0 −ω

ω 0

]
i.e.,

AdRω̂ = ω̂

8



3.4 Actions
In the case of SO(2) the vector space is R2, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by ω would do:

q(ω) = Re[ω]+ p

For small angles ω we have
e[ω]+ ≈ I +[ω]+ = I +ω[1]+

where [1]+ acts like a restricted “cross product” in the plane on points:

[1]+

[
x
y

]
= Rπ/2

[
x
y

]
=

[
−y
x

]
(3)

Hence the derivative of the action is given as

∂q(ω)

∂ω
= R

∂

∂ω

(
e[ω]+ p

)
= R

∂

∂ω
(ω[1]+p) = RHp

where Hp is a 2×1 matrix that depends on p:

Hp
∆
= [1]+p =

[
−py
px

]

9



4 2D Rigid Transformations

4.1 Basics
The Lie group SE(2) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices
of the form

T ∆
=

[
R t
0 1

]
where R ∈ SO(2) is a rotation matrix and t ∈ R2 is a translation vector. SE(2) is the semi-direct
product of R2 by SO(2), written as SE(2) = R2o SO(2). In particular, any element T of SE(2)
can be written as

T =

[
0 t
0 1

][
R 0
0 1

]
and they compose as

T1T2 =

[
R1 t1
0 1

][
R2 t2
0 1

]
=

[
R1R2 R1t2 + t1

0 1

]
Hence, an alternative way of writing down elements of SE(2) is as the ordered pair (R, t), with
composition defined a

(R1, t1)(R2, t2) = (R1R2, R1t2 + t1)

The corresponding Lie algebra se(2) is the vector space of 3×3 twists ξ̂ parameterized by the
twist coordinates ξ ∈ R3, with the mapping

ξ
∆
=

[
v
ω

]
→ ξ̂

∆
=

[
[ω]+ v

0 0

]
Note we think of robots as having a pose (x,y,θ) and hence I reserved the first two components
for translation and the last for rotation. The corresponding Lie group generators are

Gx =

 0 0 1
0 0 0
0 0 0

 Gy =

 0 0 0
0 0 1
0 0 0

 Gθ =

 0 −1 0
1 0 0
0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(2):

T = eξ̂ =

(
e[ω]+,(I− e[ω]+)

v⊥

ω

)
4.2 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

= =

[
R t
0 1

][
[ω]+ v

0 0

][
RT −RT t
0 1

]
=

[
[ω]+ −[ω]+t +Rv

0 0

]
=

[
[ω]+ Rv− t⊥ω

0 0

]
(4)

10



From this we can express the Adjoint map in terms of plane twist coordinates:[
v′

ω ′

]
=

[
R −t⊥

0 1

][
v
ω

]

4.3 Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

q̂ =

[
q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

Analoguous to SE(3) (see below), we can compute a velocity ξ̂ p̂ in the local T frame:

ξ̂ p̂ =

[
[ω]+ v

0 0

][
p
1

]
=

[
[ω]+p+ v

0

]
By only taking the top two rows, we can write this as a velocity in R2, as the product of a 2× 3
matrix Hp that acts upon the exponential coordinates ξ directly:

[ω]+p+ v = v+Rπ/2 pω =
[

I2 Rπ/2 p
][ v

ω

]
= Hpξ

11



5 3D Rotations

5.1 Basics
The Lie group SO(3) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices.
Its Lie algebra so(3) is the vector space of 3× 3 skew-symmetric matrices ω̂ . Since SO(3) is a
three-dimensional manifold, so(3) is isomorphic to R3 and we define the map

ˆ: R3→ so(3)

ˆ: ω → ω̂ = [ω]×

which maps 3-vectors ω to skew-symmetric matrices [ω]× :

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

= ωxGx +ωyGy +ωzGz

Here the matrices Gi are the generators for SO(3),

Gx =

 0 0 0
0 0 −1
0 1 0

Gy =

 0 0 1
0 0 0
−1 0 0

 Gz =

 0 −1 0
1 0 0
0 0 0


corresponding to a rotation around X , Y , and Z, respectively. The Lie bracket [x,y] in so(3) corre-
sponds to the cross product x× y in R3.

Hence, for every 3-vector ω there is a corresponding rotation matrix

R = e[ω]×

which defines a canonical parameterization of SO(3), with ω known as the canonical or exponen-
tial coordinates. It is equivalent to the axis-angle representation for rotations, where the unit vector
ω/θ defines the rotation axis, and its magnitude the amount of rotation θ .

The exponential map can be computed in closed form using Rodrigues’ formula [4, page 28]:

eω̂ = I +
sinθ

θ
ω̂ +

1−cosθ

θ 2 ω̂
2 (5)

where ω̂2 = ωωT − I, with ωωT the outer product of ω . Hence, a slightly more efficient variant is

eω̂ = (cosθ) I +
sinθ

θ
ω̂ +

1−cosθ

θ 2 ωω
T (6)

5.2 Diagonalized Form
Because a 3D rotation R leaves the axis ω unchanged, R can be diagonalized as

R =C

 e−iθ 0 0
0 eiθ 0
0 0 1

C−1

12



with C =
(

c1 c2 ω/θ
)
, where c1 and c2 are the complex eigenvectors corresponding to the

2D rotation around ω . This also means that, by (2),

ω̂ =C

 −iθ 0 0
0 iθ 0
0 0 0

C−1

In this case, C has complex columns, but we also have

ω̂ = B

 0 −θ 0
θ 0 0
0 0 0

BT (7)

with B =
(

b1 b2 ω/θ
)
, where b1 and b2 form a basis for the 2D plane through the origin and

perpendicular to ω . Clearly, from Section 3.2, we have

c1 = B

 1
i
0

 and c2 = B

 i
1
0


and when we exponentiate (7) we expose the 2D rotation around the axis ω/θ with magnitude θ :

R = B

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

BT

The latter form for R can be used to prove Rodrigues’ formula. Expanding the above, we get

R = (cosθ)
(
b1bT

1 +b2bT
2
)
+(sinθ)

(
b2bT

1 −b1bT
2
)
+ωω

T/θ
2

Because B is a rotation matrix, we have BBT = b1bT
1 + b2bT

2 +ωωT/θ 2 = I, and using (7) it is
easy to show that b2bT

1 −b1bT
2 = ω̂/θ , hence

R = (cosθ)(I−ωω
T/θ

2)+(sinθ)(ω̂/θ)+ωω
T/θ

2

which is equivalent to (6).

5.3 The Adjoint Map
For rotation matrices R we can prove the following identity (see 9 on page 20):

R[ω]×RT = [Rω]× (8)

Hence, given property (8), the adjoint map for so(3) simplifies to

AdR[ω]× = R[ω]×RT = [Rω]×

and this can be expressed in exponential coordinates simply by rotating the axis ω to Rω .
As an example, to apply an axis-angle rotation ω to a point p in the frame R, we could:

1. First transform p back to the world frame, apply ω , and then rotate back:

q = Re[ω]×RT

2. Immediately apply the transformed axis-angle transformation AdR[ω]× = [Rω]×:

q = e[Rω]× p

13



5.4 Actions
In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by ω would do:

q(ω) = Re[ω]× p

hence the derivative is:

∂q(ω)

∂ω
= R

∂

∂ω

(
e[ω]× p

)
= R

∂

∂ω
([ω]×p) = R[−p]×

To show the last equality note that

[ω]×p = ω× p =−p×ω = [−p]×ω

14



6 3D Rigid Transformations
The Lie group SE(3) is a subgroup of the general linear group GL(4) of 4×4 invertible matrices
of the form

T ∆
=

[
R t
0 1

]
where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. An alternative way of
writing down elements of SE(3) is as the ordered pair (R, t), with composition defined as

(R1, t1)(R2, t2) = (R1R2, R1t2 + t1)

Its Lie algebra se(3) is the vector space of 4× 4 twists ξ̂ parameterized by the twist coordinates
ξ ∈ R6, with the mapping [4]

ξ
∆
=

[
ω

v

]
→ ξ̂

∆
=

[
[ω]× v

0 0

]
Note we follow Frank Park’s convention and reserve the first three components for rotation, and
the last three for translation. Hence, with this parameterization, the generators for SE(3) are

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(3):

T = exp ξ̂

A closed form solution for the exponential map is given in [4, page 42].

exp

([̂
ω

v

]
t

)
=

[
e[ω]×t (I− e[ω]×t)(ω× v)+ωωT vt

0 1

]

6.1 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

=

[
R t
0 1

][
[ω]× v

0 0

][
RT −RT t
0 1

]
=

[
[Rω]× −[Rω]×t +Rv

0 0

]
=

[
[Rω]× t×Rω +Rv

0 0

]
15



From this we can express the Adjoint map in terms of twist coordinates (see also [4] and FP):[
ω ′

v′

]
=

[
R 0

[t]×R R

][
ω

v

]

6.2 Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =

[
q
1

]
=

[
Rp+ t

1

]
=

[
R t
0 1

][
p
1

]
= T p̂

We would now like to know what an incremental pose parameterized by ξ would do:

q̂(ξ ) = Teξ̂ p̂

hence the derivative is
∂ q̂(ξ )

∂ξ
= T

∂

∂ξ

(
ξ̂ p̂
)

where ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame):

ξ̂ p̂ =

[
[ω]× v

0 0

][
p
1

]
=

[
ω× p+ v

0

]
Notice how velocities are analogous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change.

By only taking the top three rows, we can write this as a velocity in R3, as the product of a
3×6 matrix Hp that acts upon the exponential coordinates ξ directly:

ω× p+ v =−p×ω + v =
[
−[p]× I3

][ ω

v

]
yielding the derivative

∂ q̂(ξ )
∂ξ

= T
∂

∂ξ

(
ξ̂ p̂
)
= T

[
−[p]× I3

0 0

]
The inverse action T−1 p is

q̂ =

[
q
1

]
=

[
RT (p− t)

1

]
=

[
RT −RT t
0 1

][
p
1

]
= T−1 p̂

16



7 3D Similarity Transformations
The group of 3D similarity transformations Sim(3) is the set of 4× 4 invertible matrices of the
form

T ∆
=

[
R t
0 s−1

]
where s is a scalar. There are several different conventions in use for the Lie algebra generators,
but we use

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 G7 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


7.1 Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =

[
q

s−1

]
=

[
Rp+ t

s−1

]
=

[
R t
0 s−1

][
p
1

]
= T p̂

The derivative D1 f (ξ ) in an incremental change ξ to T is given by T H(p) where

H(p) = Gi
jk p j =


0 z −y 1 0 0 0
−z 0 x 0 1 0 0
y −x 0 0 0 1 0
0 0 0 0 0 0 −1


In other words

D1 f (ξ ) =
[

R t
0 s−1

][
− [p]x I3 0

0 0 −1

]
=

[
−R [p]x R −t

0 0 −s−1

]
This is the derivative for the action on homogeneous coordinates. Switching back to non-homogeneous
coordinates is done by [

q
a

]
→ q/a

with derivative [
a−1I3 −qa−2 ]

For a = s−1 we obtain

D1 f (ξ )=
[

sI3 −qs2 ][ −R [p]x R −t
0 0 −s−1

]
=
[
−sR [p]x sR −st +qs

]
=
[
−sR [p]x sR sRp

]

17



8 2D Affine Transformations
The Lie group A f f (2) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices
that maps the line infinity to itself, and hence preserves paralellism. The affine transformation
matrices A can be written as [3]  m11 m12 t1

m21 m22 t2
0 0 k


with M ∈ GL(2), t ∈ R2, and k a scalar chosen such that det(A) = 1. Note that just as SE(2) is a
semi-direct product, so too is A f f (2) =R2oGL(2). In particular, any affine transformation A can
be written as

A =

[
0 t
0 1

][
M 0
0 k

]
and they compose as

A1A2 =

[
M1 t1
0 k1

][
M2 t2
0 k2

]
=

[
M1M2 M2t2 + k2t1

0 k1k2

]
From this it can be gleaned that the groups SO(2) and SE(2) are both subgroups, with SO(2) ⊂
SE(2) ⊂ A f f (2). By choosing the generators carefully we maintain this hierarchy among the
associated Lie algebras. In particular, se(2)

G1 =

 0 0 1
0 0 0
0 0 0

 G2 =

 0 0 0
0 0 1
0 0 0

 G3 =

 0 −1 0
1 0 0
0 0 0


can be extended to the Lie algebra aff(2) using the three additional generators

G4 =

 0 1 0
1 0 0
0 0 0

 G5 =

 1 0 0
0 −1 0
0 0 0

 G6 =

 0 0 0
0 −1 0
0 0 1


Hence, the Lie algebra aff(2) is the vector space of 3× 3 incremental affine transformations â
parameterized by 6 parameters a ∈ R6, with the mapping

a→ â ∆
=

 a5 a4−a3 a1
a4 +a3 −a5−a6 a2

0 0 a6


Note that G5 and G6 change the relative scale of x and y but without changing the determinant:

exG5 = exp

 x 0 0
0 −x 0
0 0 0

=

 ex 0 0
0 1/ex 0
0 0 1



exG6 = exp

 0 0 0
0 −x 0
0 0 x

=

 1 0 0
0 1/ex 0
0 0 ex


18



It might be nicer to have the correspondence with scaling x and y more direct, by choosing

G5 =

 1 0 0
0 0 0
0 0 −1

 G6 =

 0 0 0
0 1 0
0 0 −1


and hence

exG5 = exp

 x 0 0
0 0 0
0 0 −x

=

 ex 0 0
0 1 0
0 0 1/ex


exG6 = exp

 0 0 0
0 x 0
0 0 −x

=

 1 0 0
0 ex 0
0 0 1/ex


9 2D Homographies
When viewed as operations on images, represented by 2D projective space P3, 3D rotations are a
special case of 2D homographies. These are now treated, loosely based on the exposition in [2, 3].

9.1 Basics
The Lie group SL(3) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices
with determinant 1. The homographies generalize transformations of the 2D projective space, and
A f f (2)⊂ SL(3).

We can extend aff(2) to the Lie algebra sl(3) by adding two generators

G7 =

 0 0 0
0 0 0
1 0 0

 G8 =

 0 0 0
0 0 0
0 1 0


obtaining the vector space of 3× 3 incremental homographies ĥ parameterized by 8 parameters
h ∈ R8, with the mapping

h→ ĥ ∆
=

 h5 h4−h3 h1
h4 +h3 −h5−h6 h2

h7 h8 h6


9.2 Tensor Notation

• A homography between 2D projective spaces A and B can be written in tensor notation HB
A

• Applying a homography is then a tensor contraction xB = HB
A xA, mapping points in A to

points in B.

19



Appendix: Proof of Property 9
We can prove the following identity for rotation matrices R,

R[ω]×RT = R[ω]×
[

a1 a2 a3
]

= R
[

ω×a1 ω×a2 ω×a3
]

=

 a1(ω×a1) a1(ω×a2) a1(ω×a3)
a2(ω×a1) a2(ω×a2) a2(ω×a3)
a3(ω×a1) a3(ω×a2) a3(ω×a3)


=

 ω(a1×a1) ω(a2×a1) ω(a3×a1)
ω(a1×a2) ω(a2×a2) ω(a3×a2)
ω(a1×a3) ω(a2×a3) ω(a3×a3)


=

 0 −ωa3 ωa2
ωa3 0 −ωa1
−ωa2 ωa1 0


= [Rω]× (9)

where a1, a2, and a3 are the rows of R. Above we made use of the orthogonality of rotation matrices
and the triple product rule:

a(b× c) = b(c×a) = c(a×b)

Similarly, without proof [4, Lemma 2.3]:

R(a×b) = Ra×Rb

Appendix: Alternative Generators for sl(3)

[2] uses the following generators for sl(3):

G1 =

 0 0 1
0 0 0
0 0 0

 G2 =

 0 0 0
0 0 1
0 0 0

 G3 =

 0 1 0
0 0 0
0 0 0



G4 =

 0 0 0
1 0 0
0 0 0

 G5 =

 1 0 0
0 −1 0
0 0 0

 G6 =

 0 0 0
0 −1 0
0 0 1


G7 =

 0 0 0
0 0 0
1 0 0

 G8 =

 0 0 0
0 0 0
0 1 0


We choose to use a different linear combination as the basis.

20



References
[1] B.C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.

Springer, 2000.

[2] C. Mei, S. Benhimane, E. Malis, and P. Rives. Homography-based tracking for central cata-
dioptric cameras. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), October
2006.

[3] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient homography-based tracking and 3-D
reconstruction for single-viewpoint sensors. IEEE Trans. Robotics, 24(6):1352–1364, Dec.
2008.

[4] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Manipulation.
CRC Press, 1994.

21


