
Cartographic Projection Procedures

Release 4

Interim Report

Gerald I. Evenden

September 24, 1995

Contents

Introduction 3

Acknowledgements : 3

Release 3{4 Compatibility : 3

New hyphen options. : 4

Radius Parameters : 7

Cartesian Units : 7

Initialization Parameter : 8

Runtime Initialization and Default Files : : : : : : : : : : : : : : : : : : : 9

Paths of control �les : 10

Caveats : 10

Datum Conversions 13

Program nad2nad. : 14

New and Revised Projections 17

Programming with the Cartographic Library 23

Basic Usage : 23

Limiting Selection of Projections : 25

Error Handling : 26

More Complete Program Example : 26

Library Lists : 27

Matrix Datum Conversion. : 28

Projection Approximations : 29

Chebyshev Approximation : 29

Cartographic Application : 30

Appendix 1|Summary of program proj commands 35

Appendix 2|Summary of program nad2nad commands 39

Appendix 3|Projection Library Entries 41

1

2 CONTENTS

3

Introduction

This is an interim document introducing changes and additions to release 4 of the

cartographic projection program proj originally described in Cartographic Pro-

jection Procedures for the Unix Environment|A User's Manual (U.S. Geological

Survey Open-File Report 90{284). Because this report adds to, and does not re-

place, 90-284, new users of this system should obtain copies of the original report

for full documentation of the program. Users of release 3 proj should pay careful

attention to details of this new release which may a�ect current scripts and usage.

The principle reason for release 4 of proj is to increase the system's portability

and usability. Two prime factors are considered in attempting to achieve this goal:

1. to make the C language source code compatible and compliant with ansi

language standards and posix procedural standards and

2. improve the modularity and encapsulization of the internals.

Although the earlier version, coded in K&R style C, was generally successful in

installation, occasional problems occurred that were due to site system peculiarities.

Hopefully, most of these have been eliminated.

Although the program proj is a reasonably
exible �lter tool, it is limited in its

application to tasks that lend themselves to this mode of data processing. To help

software developers that need cartographic procedures embedded in their programs,

the cartographic procedures used in proj have been more carefully encapsulated

and thus make their inclusion in other application software a relatively easy task.

Individual projection procedures can now also have multiple states of initialization

so that processes such as datum transformations can be carried out within the same

program.

Acknowledgements

The author expresses his gratitude to the large number of individuals who have

contributed to the improvements and re�nements of this software through questions,

suggestions and an occasional complaint. In particular, Jerry L. Bohannon has

made several suggestions that have been incorporated in the current release and

has supplied valuable source material. User feedback is a prime requirement in any

attempt to develop quality software.

In addition, special thanks to John P. Snyder for resolving technical problems

and supplying additional source material.

Release 3{4 Compatibility

Despite losing some upward compatibility, a few executional changes of release 4

of proj were necessary in order for options to maintain a reasonable relationship

with the revised internals of the system. Two proj control parameters found in

earlier releases are deleted: the -c for naming a source of ancillary control data and

+inv for specifying the inverse mode. The action of the -c option is replaced by

the more versatile initialization �les and the +init parameter. Specifying inverse

projections is now done with the -I parameter. Inverse projections with invproj

name remains in e�ect.

Of lesser importance, the use of list as an argument to the +ellps and +proj

to obtain a listing of the available ellipsoid constants and projections has been

dropped from release 4. Run-line options -le and -lp now perform these respective

functions.

4 INTRODUCTION

New hyphen options.

To obtain a list of proj projections, the -l or -lp option will display a list of all

projections supported in the current installation (replaces the former +proj=list

option). An list with expanded explanation of each projection and associated pa-

rameters is obtained by using -lP. Examples of these option:

proj -l

qua_aut : Quartic Authalic

aea : Albers Equal Area

aeqd : Azimuthal Equidistant

airy : Airy

aitoff : Aitoff

alsk : Mod. Stererographics of Alaska

...

and

proj -lP

qua_aut : Quartic Authalic

PCyl., Sph.

aea : Albers Equal Area

Conic Sph&Ell

lat_1= lat_2=

aeqd : Azimuthal Equidistant

Azi, Sph&Ell

lat_0= guam

...

In general, the �rst supplementary line describes projection class (pseudocylindrical,

conic, : : :), spherical or elliptical, : : : , and additional lines list options unique to

each projection.

For a short reminder of options associated with a single projection, the option

-l=id can be used where id is the accronym of the projection in question. For

example:

proj -l=lcc

lcc : Lambert Conformal Conic

Conic, Sph&Ell

lat_1= and lat_2= or lat_0=

Because proj may be using the initialization and default �les (see Runtime

Initialization Files) the user may not be aware of the actual parameters being

used by proj. In addition, parameter misspelling or faulty usage can go unnoticed

because proj does not
ag nor notify the user of parameters it does not know about.

The -v option is used to help verify selection and usage of projection parameters

(+ parameters) by displaying what values were actually used by the program. In

addition, parameters that were entered but not used are also noted and listed. For

example, the user performs the following proj execution:

proj +proj=poly +lat_0=40 +lon0=-66 -v

with the following results printed by the -v printed at the beginning of the output:

+proj=poly +lat_0=40 +ellps=clrk66

following specified but NOT used

+lon0=-66

New hyphen options. 5

The +lon0 parameter was not used and the user probably intended to use +lon_0.

Although the user might have sensed an error by examining the output and seeing

questionable values, other errors can be more subtle and di�cult to detect. Also

note, the user is informed of the ellipsoid that was selected by the proj_def.dat

�le.

The -E option is added as a convenience by causing the input coordinates to

be copied to the output stream prior the printing the projected results. Thus the

both forward and inverse values are placed side by side on the output shown in this

example output:

sample points

65W 43d15N -405817.61 4802414.53

-55 37.33 442931.70 4144652.95

created by the following script:

proj +proj=poly +lon_0=-60 -E <<EOF

sample points

65W 43d15N

-55 37.33

EOF

When developing a new map or region for a plane coordinate system it is de-

sirable to adjust the projection parameters to minimize the projection distortion

over the area. Although analytic methods may be used to determine these factors

it is often as easy to \cut and try" if a means to quickly check these values is avail-

able. Scale and information on other factors is important when using information

in cartesian space. To provide information about the performance of a projection

at a point the -V option provides an anotated lists of scale factors and other factors

at each location entered. Executing the following lines to determine characteristics

The following execution of proj shows the use of this switch for a point in the

Massachussetts Mainland spcs zone:

proj +init=nad27:2001 +units=us-ft -V

-70d36'30.872 41d38'54.192 A residence

which will produce the following output from proj:

Lambert Conformal Conic

Conic, Sph&Ell

lat_1= and lat_2= or lat_0

+init=/usr/local/lib/proj/nad27:2001 +units=us-ft +proj=lcc +a=6378206.4

+es=.006768657997291094 +lon_0=-71d30 +lat_1=42d41 +lat_2=41d43 +lat_0=41

+x_0=182880.3657607315 +y_0=0 +no_defs

Final Earth figure: ellipsoid

Major axis (a): 6378206.400

1/flattening: 294.978698

squared eccentricity: 0.006768657997

A residence

Longitude: 70d36'30.872"W [-70.608575556]

Latitude: 41d38'54.192"N [41.648386667]

Easting (x): 843640.74

Northing (y): 237542.45

Meridian scale (h) : 1.00001069 (0.001069 % error)

Parallel scale (k) : 1.00001069 (0.001069 % error)

Areal scale (s): 1.00002138 (0.002138 % error)

Angular distortion (w): 0.000

Meridian/Parallel angle: 90.00000

Convergence : -0d35'55.663" [-0.59879536]

Max-min (Tissot axis a-b) scale error: 1.00001 1.00001

6 INTRODUCTION

The \Final Earth �gure" is shown to inform the user as to the e�ect of either

selecting one of the +R options or the fact that the projection is only for a spherical

�gure. Discrepancies of the h and k values, which should be exactly 1., are due to

the limitations of determining derivatives by numeric rather than analytic methods.

To maintain a comple complete information log, the -v option is implicit with -V.

Additional points result in similar output and the user can also override the

forward-inverse mode of proj by making the the �rst character of a data line either

an upper of lower case f for forward or i for inverse. Any information after the

coordinates, such as the notation \A residence " in the previous, example, are

printed out before the analytic information.

The meridian, h, and parallel, k, scale factors are the respective scales along

the meridian and parallel through the point and the areal scale factor, s, is the

area scale at the point. For conformal projections, h = k for all points and for

equal-area projections s will be constant for all points.

If two lines pass though the point the angle between these lines in geographic

space may be as much as twice the angular distortion, 2!, di�erent in carte-

sian space. Angular distortion is a common metric to quantify distortion of non-

conformal maps by contouring either ! or 2!. Angular distortion is always 0 for

conformal projections. Meridian-parallel angle, �

0

, is the angle between the merid-

ian and parallel in cartesian space and is always 90

�

for conformal projections.

The convergence angle,
, is the angle measured from the positive y cartesian

axis of the projection to true North|the meridian through the point. Most large

scale maps, such as the usgs quadrangle series, will have a margin �gure with

utm grid and magnetic declination measured at the center of the sheet. \Grid

declination" is the convergence angle.

Scale factors a and b are the maximum and minimum scale error and de�ne

the major and minor axis of the Tissot Indicatrix. The Tissot Indicatix, used as a

visual indication of map distortion, is based upon the concept of drawing a small

circle in geographic space and then portray a magni�ed image of this circle after

it has been projected. For conformal maps, the Indicatrix will remain a circle but

have a di�erent size depending upon its location on the map. Equal-area maps will

have circular Indicatrixs at a point or along a line, but they will be elliptical in

shape elsewhere with only the area withing the ellipse remaining constant.

The -S option provides a summary of the above information as a �eld of values,

enclosed by <>, appended to the output record. Values incude meridinal and parallel

scale scale factors (h and k), area scale factor (s), angular distortion (!) in decimal

degrees, and the major and minor axis of the Tissot Indicatrix (a, b).

Two projections of the conterminous U.S., Alber's and Lambert Conformal

Conic, demonstrate characteristics of the -S option output as related to respective

equal area and conformal projections. Starting with the script for Albers Equal

Area:

proj -S +proj=aea +lon_0=90W -v <<EOF

-73 37

-110 44

EOF

proj -S +proj=lcc +lon_0=90W -v <<EOF

-73 37

-110 44

EOF

the following output was obtained:

+proj=aea +lon_0=90W +ellps=clrk66 +lat_1=29.5 +lat_2=45.5

1490786.23 4043351.48 <1.00965 0.990439 1 0.550448 0.990439 1.00965>

-1586582.09 4860774.53 <1.00364 0.996375 1 0.208089 0.996375 1.00364>

+proj=lcc +lon_0=90W +ellps=clrk66 +lat_1=33 +lat_2=45

Radius Parameters 7

1497189.34 4543009.70 <0.995191 0.995191 0.990405 0 0.995191 0.995191>

-1588520.83 5351853.03 <0.998284 0.998284 0.996571 0 0.998284 0.998284>

Note how the area scale factor (third term) remained unchanged for both points

as would be expected for an equal area projection but angular distortion and both

scale factors vary. In the case of the Lambert projection, the scale factors will

vary between points but for a particular point they are always equal in both direc-

tions and the angular distortion is always zero. This example shows the de�ning

properties of the equal area and conformal projections.

Radius Parameters

In previous releases of proj the radius of a spherical earth �gure was speci�ed by

the major axis parameter +a and either an explicit or implicit speci�cation of +es=0

for those projections with elliptical form. In release 4 the radius of a spherical Earth

may be entered with the +R=radius and thus bypassing an unnecessarily complex

method. Use of +R= takes precedence over any elliptical parameter speci�cations

so that their possible appearance in the control parameter list is ignored.

Because of the need to specify an Earth radius that has a relationship with an

ellipsoid, a set parameters are introduced to compute this radius when an ellipsoid

is also selected. The projection computations will be treated as a sphere when one

of these parameters is selected:

+R A Radius of a sphere with equivalent surface area of speci�ed ellipse.

+R V Radius of a sphere with equivalent volume of speci�ed ellipse.

+R a Arithmetic mean of the major and minor axis, R

a

= (a+ b)=2.

+R g Geometric mean of the major and minor axis, R

g

= (ab)

1=2

.

+R h Harmonic mean of the major and minor axis, R

h

= 2ab=(a+ b).

+R lat a=� Arithmetic mean of the principle radii at latitude �.

+R lat g=� Geometric mean of the principle radii at latitude �.

As an example, the Albers Equal Area projection is to be computed in the

spherical form for an Earth with a radius such that the sphere has the same surface

area as the Clarke 1866 ellipsoid:

proj +proj=aea +ellps=clrk66 +R_A ...

For projections that only perform computations for a sphere, this method is prefer-

able to simply specifying an ellipsoid and thus having the projection use the major

axis as the radius. The order of the radius and ellipsoid parameters is not impor-

tant.

Cartesian Units

Basic operation of proj assumes that projected cartesian units are the same units

as the lengths associated with the projection parameter units (i.e. +a, +b, +x_0, : : :)

which are normally in meters. For some usage, such as for spcs computations, it

is useful to provide forward-inverse conversion between geographic coordinates and

other, non-meter, systems such as feet. Usage of the parameter +units=id allows

speci�cation of several alternative of length measure. For example, if U.S. feet are

desired then the parameter +units=us-ft is used as a parameter and the cartesian

coordinates output in the forward mode and input in the inverse mode are in feet.

Usage of this parameter does not a�ect the units of the + projection parameters|

they must be in meters when using +units. The current list of units supported can

be obtained by using proj's run-line option -lu:

8 INTRODUCTION

km 1000. Kilometer

m 1. Meter

dm 1/10 Decimeter

cm 1/100 Centimeter

mm 1/1000 Millimeter

kmi 1852.0 International Nautical Mile

in 0.0254 International Inch

ft 0.3048 International Foot

yd 0.9144 International Yard

mi 1609.344 International Statute Mile

fath 1.8288 International Fathom

ch 20.1168 International Chain

link 0.201168 International Link

us-in 1./39.37 U.S. Surveyor's Inch

us-ft 0.304800609601219 U.S. Surveyor's Foot

us-yd 0.914401828803658 U.S. Surveyor's Yard

us-ch 20.11684023368047 U.S. Surveyor's Chain

us-mi 1609.347218694437 U.S. Surveyor's Statute Mile

The numeric value listed for reference purposes and is the value used to convert the

users cartesian coordinates to and from meters used for internal computations:

(x; y)

meters

$ conv � (x; y)

usersunits

There is considerable variety of units of length measure and to include all units

used in just the last 200 years would only create confusion for the user. Other

situations such as the fact that the brass bar that established the standard for

the British yard shrank in length between 1853 and 1958 by about 5:5� (Bomford,

1971) add to this confusion. Although such a small error seems trivial, it does

cause problems with high precision calculations associated with plane coordinate

systems. These factors along with the di�culty in resolving di�erences in conversion

factors for less common units the +units list is restricted to recent and well de�ned

conversions.

In order to allow other conversions to be imbedded within the cartographic

control parameters and thus be part of initialization and default control �les the

+to_meter=frac may be used. The value of frac is a numeric value with properties

identical to those of the conversion number listed with the -lu proj option. As

shown in the -lu listing, the value may be expressed as a rational fraction with the

numerator and denominator separated with a /.

Initialization Parameter

Common usage of certain projections or projection features may be facilitated by

the projection parameters being prede�ned in initialization �les. They are accessed

by the parameter +init=�le:key where �le is the name of the �le containing the

control information and key identi�es the particular set of parameters in the �le

to be included as projection parameters. Conversion of spcs data (see ref) is case

for U.S. users where details of plane coordinate conversion are located in initial-

ization �les. For example, to convert 1927 North American Datum Massachussetts

Mainland coordinates to geographic coordinates:

$ proj -I +init=nad27:2001 <in_data >out_data

The �le nad27 contains projection parameters for nad27 conversions and the key

2001 refers to the particular entry needed. Program proj will complain if either

the �le cannot be found or there is no keyword or keyword data in the �le.

Runtime Initialization and Default Files 9

Initialization �les may be established by site personel responsible for proj ad-

ministration or created by the individual user. Administrator �les are located in

a directory speci�ed by the user's environment parameter PROJ_LIB and it is the

responsibility of the administrator to distribute documentation and instructions

of �le contents and correct usage. Unless the administrator gives permission to

the user to install his �les in the system area, the user will have to refer to his

initialization �le with an absolute path:

$ proj +init=/home/me/lib/my_defs:proj5 ...

For Unix users, the ~ pre�x to the �le name will prepend the contents of the

HOME environment parameter. The user should refer to the next section on creating

initialization �les.

Runtime Initialization and Default Files

Program proj is designed with runtime facilities to con�gure application de�nitions

and default parameters to the needs of the local environment. This is achieved

though the usage of two types of ascii text control �les, initialization and default,

that are coded in a very simple control syntax that is identical for both types of

�les|only the keyword usage di�ers.

Structure of the control �les consists of identi�ers in the form <keyword> followed

by a sequence of projection parameters. When processing the control �le proj

scans for the speci�ed keyword and when found, adds the parameters following the

keyword to the internal control list. Processing of parameters continues, ignoring

the occurrence of other keywords, until the <> character pair is encountered. When

<> is found after the desired keyword, processing of the control �le is stopped, thus a

second occurrence of the keyword in the �le is ignored. As with run-line projection

parameters, keywords and parameters are words that are groups of characters that

are separated by blanks, tabs or newlines. When a word begins with a # character

all input is ignored until the next newline character; thus comments may be added

to describe the data.

The following is a simple example of a initialization control �le:

a sample (comment line)

<myid1> proj=tmerc Ra <> # spherical

transverse mercator

<pj-sph> Ra # spherical form of

the following

<pj-ell> proj=poly lon_0=90 ellps=airy <>

When the keyword myid1 is used the projection is set and the sphere of area equiv-

alent to ellipse is selected but the ellipse and other parameters needed and must be

input by other means. The next two identi�ers give su�cient detail to allow proj

to perform the projection. The pj-sph is an example where the second keyword is

ignored and its parameters are included as part of the �rst keyword speci�cations.

The �rst of the two types of control �les are used by proj is the initialization �le

explicitly referenced by the user with the +init control parameter. Its purpose is to

provide a convenient method to de�ne commonly used and complex sets of control

parameters for map or grid coordinate system. For example, the standard zones

for the spcs systems are contained in two distributed initialization �les nad27 and

nad83. Typically, the projection selection parameter, proj, is contained in these

�les and there are su�cient parameters to fully qualify all options associated with

the projection.

Unless the +no_defs projections parameter has been given, the second con-

trol �le (defaults �le) is processed after all other projection parameters have been

input and after the projection name has been established. It is scanned for two

10 INTRODUCTION

keywords: general and a keyword that is the name of the selected projection. Pa-

rameters associated with general are default values associated with all projections

and typically de�nes a default ellipsoid. Projection parameters are those normally

associated with that projection in a particular geographic area of usage. A typical

example (from the proj distribution) would be:

<general> # for all projections

ellps=clrk66 # ellipsoid compatible

with older U.S. maps

<>

<aea> # Conterminous U.S. map

lat_1=29.5

lat_2=45.5

<>

<lcc> # Conterminous U.S. map

lat_1=33

lat_2=45

<>

...

The name of this �le is proj_def.dat and is located in the directory established

by the installer or pointed to bye the environment parameter PROJ_LIB (see next

section). For non-U.S. installations, it should be edited by the installer to re
ect

local cartographic customs and usage. Program proj continues processing if the

�le cannot be found or opened and in certain cases projection initialization will fail.

Paths of control �les

The location of the initialization control �le is controlled by how the user names

the +init �le, how program proj was installed and the optional presence of the

environment parameter PROJ_LIB. If the �le name begins with a / the �le is assumed

to have an fully pathed name from the system root directory. If the name starts

with ./ or ../ is not de�ned, the �le path is treated as relative to the current

working directory. When ~/ pre�xes the �le name, the users home directory, as

de�ned by the environment parameter HOME, is used as the root of the �le name.

When simple initialization �le names are used (those names without aforemen-

tioned pre�xes) and in the case of the automatic default �le, the location of the �les

is controlled by proj installation or the user's environment parameter PROJ_LIB. In

case of the environment parameter, the user is overriding the installation defaults

and establishing his or her own initialization and default de�nition �le path. To

set the environment path do either

setenv PROJ_LIB /usr/local/lib/proj

when using csh(1) or

PROJ_LIB=/usr/local/lib/proj

export PROJ_LIB

when using sh(1) or ksh(1). If the user always wants these settings, then they can

be included in the .login or .pro�le �les.

Caveats

The initialization and default �les provide a useful tool to con�gure proj to a wide

variety of conditions that best �t local needs and thus ease the usage of proj in

the performance of routine tasks by less knowledgeable and infrequent users. But

care should be exercised in their usage. Certain options may be included in the

Runtime Initialization and Default Files 11

automatic �le that may cause hidden and unintended operations. For example,

inclusion of parameters such as R_A or R_V in the automatic �les may cause un-

intended spherical computations when it was thought that an elliptical projection

was explicitly speci�ed.

12 INTRODUCTION

13

Datum Conversions

The use of satellites and other technologic improvements in �rst order surveying

have allowed geodesists to re�ne the knowledge of the shape of the Earth. Along

with these re�nements came the inevitable process of standardizing the de�nition

of the approximating ellipsoid and establishing an international reference datum.

Prior to this, the ellipsoids and datums were established by long line precision

surveying and astronomical observation. The processing of the measurements of

these surveys let to establishment of ellipsoids which were best �ts to local condi-

tions and not the entire Earth and datums which were arbitrary to the surveyor's

network. But because this surveying relied upon the use of the spirit level for align-

ment of instruments with the horizontal plane (the geoid) they were susceptible to

perturbations of the gravity �eld and thus only useful for local purposes.

Until recently, the reference system for North America has been the North

American Datum of 1927 (nad27) which used Clarke's 1866 ellipsoid and had its

origin at Meade's Ranch in Kansas. But because of technical geodetic surveying

problems with nad27 and an interest in standardizing the reference system on an

international basis, the North American Datum of 1983 reference system nad83 has

been chosen to replace nad27. This system is based upon the Geodetic Reference

System of 1980 (grs80) which is geocentric (origin is the center of the Earth's

mass) and uses an ellipsoid approximating the entire Earth.

There are several methods for conversion of geographic data between datums

but the most convenient and perhaps common are the Molodensky formula and

the nadcon (Dewhurst, 1990) used for North American Datum conversions. The

Molodensky method is often used for international conversions but is considered to

only have a conversion accuracy of 5{10m in United States regions. The nadcon

method uses of a grid of longitude{latitude corrections fromwhich a correction value

can be interpolated for any non-nodal point. The correction grid is determined by

minimum curvature gridding of corrections for control points whose location had

been accurately determined by both nad27 and nad83 surveying methods. Error

in conversion with nadcon is generally considered to be less than a meter (0.15m

for most of the conus region) but may su�er in regions of poor control. Table 1 is

a summary of the nadcon grid regions.

Table 1: nadcon correction regions.

nad2nad Extent

Region -r region East West South North

Conterminous U.S. conus 131

�

W 63

�

W 20

�

N 50

�

N

Alaska alaska 166

�

E 128

�

W 46

�

N 77

�

N

Hawaii hawaii 161

�

W 154

�

W 18

�

N 23

�

N

Puerto Rico and

Virgin Islands

prvi 68

�

W 64

�

W 17

�

N 19

�

N

St. George Is., AK stgeorge 171

�

W 169

�

W 56

�

N 57

�

N

St. Lawrence Is., AK srlrnc 172

�

W 68

�

W 62

�

N 64

�

N

St. Paul Is., AK stpaul 171

�

W 169

�

W 57

�

N 58

�

N

High Precision GPS Network

Florida FL 88

�

W 80

�

W 24

�

N 32

�

N

Maryland MD 80

�

W 74

�

W 37

�

N 41

�

N

Tennessee TN 91

�

W 81

�

W 34

�

N 38

�

N

Washington{Oregon WO 125

�

W 116

�

W 41

�

N 50

�

N

Wisconsin WI 94

�

W 88

�

W 42

�

N 48

�

N

Recent releases (circa July, 1993) of nadcon tables also include tables for con-

14 DATUM CONVERSIONS

version between the High Precision gps Networks (hpgn) and nad83. Little infor-

mation about the hpgn was distributed with the tables so usage is available but

not de�ned at the moment. These tables are for state regions.

Program nad2nad.

For conversion of data between nad27 and nad83 datums the software distribution

now includes the program nad2nad. It performs in a manner similar to program

proj and has several of the same runline options so users familiar with proj should

have little trouble with learning nad2nad. Besides performing datum conversions

it will perform spcs and utm conversions for both input and output thus allowing

both geographic as well as grid data to be processed.

The internal functioning of nad2nad is a three step process:

1. process input data and, if selected, convert data from grid system coordinates

to geographic coordinates,

2. if nadcon region selected, convert geographic data between datums, and

3. process output data and, if selected, convert to grid system coordinates.

Control of the input and output steps are by means of the respective -i and -o

runline options which have an identical list of arguments:

27 | data is in nad27 datum. This is the default state.

83 | data is in nad83 datum.

utm=zone | data in utm coordinates for identi�ed zone (numeric value between

1 and 60).

spcs=zone | data in spcs coordinates for identi�ed State zone (see Table 2).

bin | data in binary form.

rev | reverse normal longitude-latitude or x-y order of data.

feet | data is in U.S. Surveyor's feet, otherwise in meters. Must be used in

conjunction with spcs option.

hpgn=zone | data is in hpgn datum for zone listed in Table 1.

These options represent the state of the data at respective input and output of

steps 1 and 3 and thus determine the necessary actions to be taken to convert the

information to intermediate geographic coordinates required for datum shift. More

than one option can be used and in this case they may be in a comma separated

list or separate -i or -b options as shown by the following:

nad2nad -i 83 -i spcs=1001 -i feet ...

nad2nad -i 83,spcs=1001,feet ...

Option order is not important.

Step 2 of nad2nad is controlled by the -r <region> option which determines

which nad27{nad83 zone listed in Table 1 is to be used. When this option is

speci�ed the the -i and -o must indicate di�erent datums, thus

nad2nad -i 27 -o 83 -r conus ...

is correct usage, while

nad2nad -i 27 -o 27 -r conus ...

nad2nad -r conus ...

Program nad2nad. 15

are incorrect usage. The following is an example where geographic nad27 coordi-

nates are to be converted to geographic nad83 coordinates:

nad2nad -i 27 -o 83 -r conus <<EOF

-71d15 44d20'15

120W 30N

87d30 52d14

EOF

which produces the output:

71d14'58.27"W 44d20'15.227"N

120d0'3.181"W 30d0'0.348"N

* *

Note that the last coordinate is outside the conus region.

Because changing datums of grid system data is common, the nad2nad utm and

spcs options may be used to process these systems. In this case, Massachussetts

Mainland zone nad27 coordinates in feet are converted to nad83 values in meters

by:

nad2nad -i 27,spcs=2001,feet -o 83,spcs=2001 -r conus <<EOF

840000 230000

EOF

with the results being:

273193.78 820117.57

Similarly, the same data can be converted to utm, zone 19 coordinates by:

nad2nad -i 27,spcs=2001,feet -o 83,utm=19 -r conus <<EOF

840000 230000

EOF

resulting in output of:

364916.74 4609733.79

The -r option may be omitted so that there is no datum transformation. This

allows nad2nad to be used for purposes such as converting spcs grid coordinates

to and from utm grid coordinates, conversion of grid coordinates from one zone

to an adjacent zone, or simply converting geographic coordinates to and from dms

and decimal degrees formats. The previous example could be a simple conversion

from spcs to utm in the nad27 datum as performed by:

nad2nad -i 27,spcs=2001,feet -o 27,utm=19 <<EOF

840000 230000

EOF

with the results:

364869.08 4609509.76

To do this operation with proj would create considerably more system overhead

due to two copies of the program executing and data piping operations.

16 DATUM CONVERSIONS

Table 2: List of State Plane Coordinate System Zones (spcs) and identi�cation

numbers for 1927 and 1983 North American Datums.

State Zone

0

27

0

83 State Zone

0

27

0

83 State Zone

0

27

0

83

Alabama East 101 101 Iowa North 1401 1401 North Carolina 3200 3200

West 102 102 South 1402 1402 North Dakota North 3301 3301

Alaska Zone 1 5001 5001 Kansas North 1501 1501 South 3302 3302

Zone 2 5002 5002 South 1502 1502 Ohio North 3401 3401

Zone 3 5003 5003 Kentucky North 1601 1601 South 3402 3402

Zone 4 5004 5004 South 1602 1602 Oklahoma North 3501 3501

Zone 5 5005 5005 Louisiana North 1701 1701 South 3502 3502

Zone 6 5006 5006 South 1702 1702 Oregon North 3601 3601

Zone 7 5007 5007 O�shore 1703 1703 South 3602 3602

Zone 8 5008 5008 Maine East 1801 1801 Pennsylvania North 3701 3701

Zone 9 5009 5009 West 1802 1802 South 3702 3702

Zone 10 5010 5010 Maryland 1900 1900 Rhode Island 3800 3800

Arizona East 201 201 Massachusetts Mainland 2001 2001 South Carolina 3900

Central 202 202 Islands 2002 2002 North 3901

West 203 203 Michigan East 2101 South 3902

Arkansas North 301 301 Central/m 2102 South Dakota North 4001 4001

South 302 302 West 2103 South 4002 4002

California I 401 401 North 2111 2111 Tennessee 4100 4100

II 402 402 Central/l 2112 2112 Texas North 4201 4201

III 403 403 South 2113 2113 North Central 4202 4202

IV 404 404 Minnesota North 2201 2201 Central 4203 4203

V 405 405 Central 2202 2202 South Central 4204 4204

VI 406 406 South 2203 2203 South 4205 4205

VII 407 Mississippi East 2301 2301 Utah North 4301 4301

Colorado North 501 501 West 2302 2302 Central 4302 4302

Central 502 502 Missouri East 2401 2401 South 4303 4303

South 503 503 Central 2402 2402 Vermont 4400 4400

Connecticut 600 600 West 2403 2403 Virginia North 4501 4501

Delaware 700 700 Montana 2500 South 4502 4502

Florida East 901 901 North 2501 Washington North 4601 4601

West 902 902 Central 2502 South 4602 4602

North 903 903 South 2503 West Virginia North 4701 4701

Georgia East 1001 1001 Nebraska 2600 South 4702 4702

West 1002 1002 North 2601 Wisconsin North 4801 4801

Hawaii 1 5101 5101 South 2602 Central 4802 4802

2 5102 5102 Nevada East 2701 2701 South 4803 4803

3 5103 5103 Central 2702 2702 Wyoming East 4901 4901

4 5104 5104 West 2703 2703 East Central 4902 4902

5 5105 5105 New Hampshire 2800 2800 West Central 4903 4903

Idaho East 1101 1101 New Jersey 2900 2900 West 4904 4904

Central 1102 1102 New Mexico East 3001 3001 American Samoa 5300

West 1103 1103 Central 3002 3002 Guam Island 5400

Illinois East 1201 1201 West 3003 3003 Puerto Rico, Virgin Is. 5200

West 1202 1202 New York East 3101 3101 1 5201

Indiana East 1301 1301 Central 3102 3102 (St. Croix) 2 5202

West 1302 1302 West 3103 3103

long island 3104 3104

17

New and Revised Projections

The seven new projections that have been added to release 4 of program proj are

listed in Table 3. Graphic examples are shown in Figures 1{4. In addition, new

options have been added to the some of the existing projections as shown in Table 4.

Figure 1: New Zealand Map Grid projection, with shorelines and 1

�

graticule.

18 NEW AND REVISED PROJECTIONS

Table 3: Projections new to release 4 of program proj

Projection Name

(Alias)

Type

�

Parameters Comments

Two Point Equidistant

(Doubly Equidistant)

S I +proj=tpeqd

+lon 1=�

1

+lat 1=�

1

+lon 2=�

2

+lat 2=�

2

The central points, P (�

1

,�

1

) and P (�

2

,�

2

), are on a great

circle coincident with the cartesian x-axis and the carte-

sian origin is midway between the central points and y is

positive to the left of the line from P

1

to P

2

. Distance

from any point to the two central points is true great

circle (geodesic) distance. Scale is correct along the line

through P

1

{P

2

. See Figure 3.

New Zealand Map Grid C E I +proj=nzmg The central meridian (+lon 0) and parallel (+lat 0) are

�xed at 173

�

E and 41

�

S respectively and the Interna-

tional (+ellps=intl) elliptical �gure is �xed. False east-

ing and northings are also �xed at (x 0=)2,510,000m and

(y 0=)6,023,150m. See Figure 1.

landsat C E S I +proj=lsat

+lsat=n

+path=p

This projection (not shown) is for use with landsat

satellite data and is a limited form of the more general

Space Oblique Mercator projection. The landsat satel-

lite number, n, must be in the range 1{5 and the path

number, p, must be in the ranges 1{251 for n = 1; 2; 3 or

1{233 for n = 3; 4.

50 United States Modi�ed

Stereographic

C E S I +proj=gs50 The central meridian (+lon 0) and parallel (+lat 0) are

�xed at 120

�

W and 45

�

N respectively. Selection of ellip-

soid or spherical conversion is performed by conventional

means, but actual values used are �xed at respective

Clarke 1866 and its equivalent sphere radius, 6,370,997m.

See Figure 4B.

Alaska Modi�ed

Stereographic

C E S I +proj=alsk The central meridian (+lon 0) and parallel (+lat 0)

are �xed at 152

�

W and 64

�

N respectively. Control of

elliptical-spherical �gure is �xed an performed in an iden-

tical manner to the above 50 U.S. Modi�ed Stereographic.

See Figure 4A.

Lee Oblated Stereographic C S I +proj=lee os The central meridian (+lon 0) and parallel (+lat 0) are

�xed at 165

�

W and 10

�

S respectively. See Figure 4D.

Miller Oblated

Stereographic

C S I +proj=mill os The central meridian (+lon 0) and parallel (+lat 0) are

�xed at 20

�

E and 18

�

N respectively. See Figure 4C.

Laborde C E I +proj=labrd

+azi=A

z

k 0=k

0

This projection is only used for the Madagascar Grid

Map (see Figure 2) where the parameters should al-

ways be speci�ed as: ellps=intl, lon_0=46d2613.95E',

lat_0=18d54S, azi=18d54, k_0=.9995, x_0=400000 and

y_0=800000

�

C{Conformal, A{Equal-Area, S{spherical, E{elliptical, I{inverse

19

Table 4: Projections revised in release 4 of program proj

Projection Name

(Alias)

Type

�

Parameters Comments

Mercator

(Wright)

C E I +proj=merc

+lon ts=�

ts

or

+k 0=k

0

Applications should be limited to equitorial regions, but

it is frequently used for navigational charts with true scale

(�

s

) speci�ed within or near the chart's boundary. Alter-

natively, equitorial scale may be adjusted by specifying

k

0

. When neither is speci�ed, scale is true at the Equator.

Lambert Conformal Conic

(Conical Orthomorphic)

C E I +proj=lcc

+lat 0=�

0

secant

+lat 1=�

1

+lat 2=�

2

tangent

+lat 1=�

1

+k 0=k

0

In the secant case, �

1

and �

2

are the latitudes of intersec-

tion of the cone with the ellipsoid or sphere and for the

tangent case, �

1

is the latitude of tangency of the cone

with the ellipsoid or sphere. Scale is true at the secant

or tangency latitudes. The special cases where �

1

= ��

2

(secant mode) or �

1

= 0 (tangent mode) that con�gure

a cylinder are not allowed. Use Mercator for these cases.

If lat 0 is not speci�ed, then 0

�

(Equator) is assumed in

the secant case and �

1

in the tangent case.

Oblique Mercator (Recti-

�ed Skew Orthomorphic)

C E I +proj=omerc

+k 0=k

0

+lat 0=�

0

+no rot

+no uoff

+rot conv

two point

+lon 1=�

1

+lat 1=�

1

+lon 2=�

2

+lat 2=�

2

azimuthal

+alpha=�

c

+lonc=�

c

Two means of specify cartographic control are:

1. two points on the projection centerline (�

1

, �

1

) and

(�

2

, �

2

),

2. a point of origin at (�

c

, �

0

) and an azimuth, mea-

sured clockwise from North, of the projection cen-

terline �

c

.

The presence of the +alpha option determines which

method is used. The projection centerline approximates

a geodesic.

Unless the +no_rot option is speci�ed, the coordinates

are rotated by �

c

(computed internally with the two

point method) or by the origin convergence angle when

+rot_conv is speci�ed. In some cases, an o�set in the

pre-rotated axis may need to be suppressed with the

+no_uoff option. The scale factor, k

0

, applies to the

projection origin.

Initialization will fail if parameters de�ne a nearly trans-

verse or normal Mercator projection.

�

C{Conformal, E{elliptical, I{inverse

20 NEW AND REVISED PROJECTIONS

Figure 2: Laborde projection of Madagascar with shorelines and 1

�

graticule.

21

Figure 3: Two Point Equidistant projection, with shorelines and 5

�

graticule.

Central points at Seattle, Washington and Charlotte Amalie, U.S. Virgin Islands

(+proj=tpeqd +lon 1=122d20w +lat 1=47d36n +lon 2=64d54w +lat 2=18d21n).

22 NEW AND REVISED PROJECTIONS

D { Lee Oblated Stereographic

10

�

graticule (+proj=lee os)

B { 50 United States Modi�ed Stereographic

5

�

graticule (+proj=gs50)

A { Alaska Modi�ed Stereographic

5

�

graticule (+proj=alsk)

C { Miller Oblated Stereographic

10

�

graticule (+proj=mill os)

Figure 4: Modi�ed Stereographic projections with shorelines and graticules

23

Programming with the Cartographic Library

Use of cartographic projections in computer applications is varied and potentially

complex and, although a program such as proj can serve variety of needs, there are

many situations where more specialized programs are more appropriate or required.

To support alternate applications, the software was developed to be modular and

encapsulated so that the application programmer can concentrate e�orts on the

unique needs of the application and not on the details of cartographic mathemat-

ics. This section describes usage of the principle entries of the projection library

and Appendix 3 contains a summary of all the entries to procedures of potential

programmatic interest.

Basic Usage

A cartographic projection is similar to the standard transcendental functions in-

cluded in the compilers mathematics library such as sin(x) to compute sinx and

asin(x) to compute the inverse, sin

�1

x. But unlike the transcendental functions,

the forward, P , and inverse, P

�1

, cartographic projection functions have a multi-

variate argument and a bivariate return value:

(x; y) = P (�; �; � � �) (1)

(�; �) = P

�1

(x; y; � � �) (2)

where x and y are the cartesian coordinates, usually in meters, and � and � are

the respective longitude and latitude geographic coordinates in radians. There is

always either the Earth's radius, R, or the major ellipsoid major axis, a, and one

of the means of specifying ellipsoid shape that are part of the remaining P argu-

ments. The actual number of function arguments is re
ected in the tabulation of

the cartographic parameters previously described in the user's sections and include

such elements as central meridian, standard parallels, false easting and northing,

: : : .

Because of the large number of selectable projections, each with their own special

list of arguments, the followingmethod was chosen to simplify the number of library

entries needed by the programmer to the following prototypes de�ned in the header

�le projects.h:

PJ *pj_init(int, char **);

UV pj_fwd(UV, PJ *);

UV pj_inv(UV, PJ *);

void pj_free(PJ *);

The complexity of this system is not in programmatic usage as described in the

following text, but in understanding and properly using the cartographic control

parameters.

The procedure pj_init must be called �rst to select and initialize a projection.

Parameters for the projection are passed in a manner identical with the normal

C program entry point main: a count of the number of parameters and a list of

pointers to the characters strings containing the parameters. In this case, the

parameter strings are those cartographic parameters discussed in the section on

using program proj and the projection tables. This also includes references to

initialization �les and the use of the default �le.

If the initialization call to pj_init fails, then a null or (PJ *)0 value is returned.

Otherwise, pj_init returns a pointer that is used as an argument with the forward,

pj_fwd, and inverse, pj_inv, projection functions. The �rst argument argument

to the forward and inverse projection function and the function return is a type

declared (in the header �le projects.h) as:

24 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

typedef struct { double u, v; } UV;

where u and v respective x and y cartesian coordinates or respective longitude, �,

and latitude, �, geographic coordinates

1

in radians. If either the forward or inverse

function fail to perform a conversion, both u and v in the returned structure are

set to HUGE_VAL as de�ned in the math.h header �le.

Two additional notes should be made about the header �le projects.h: it

contains includes to the system header �les stdlib.h and math.h, and several pre-

de�ned constants such as multipliers DEG_TO_RAD and RAD_TO_DEG to respectively

convert degrees to and from radians.

To illustrate usage, the following is an example of a �lter procedure, example1.c,

designed to convert input pairs of decimal latitude and longitude values in decimal

degrees to corresponding cartesian coordinates using the Polyconic projection with

a central meridian of 90

�

W and the Clarke 1866 ellipsoid:

#include <stdio.h>

#include <projects.h>

main(int argc, char **argv) {

static char *parms[] = {

"proj=poly",

"ellps=clrk66",

"lon_0=90W",

"no_defs"

};

PJ *ref;

UV data;

if (! (ref = pj_init(sizeof(parms)/sizeof(char *), parms))) {

fprintf(stderr, "Projection initialization failed\n");

exit(1);

}

while (scanf("%lf %lf", &data.v, &data.u) == 2) {

data.u *= DEG_TO_RAD;

data.v *= DEG_TO_RAD;

data = pj_fwd(data, ref);

if (data.u != HUGE_VAL)

printf("%.3f\t%.3f\n", data.u, data.v);

else

printf("data conversion error\n");

}

exit(0);

}

Assuming that the header �le has been installed in /usr/local/include and the

projection library in /usr/local/lib, then the example can be compiled and

loaded by:

cc -I/usr/local/include example1.c -L/usr/local/lib -lproj -lm

To test the program, the script

a.out <<EOF

0 -90

1

An argument can be made that giving both coordinates systems the same type name is bad

style, but the author has found through experience that this method is generally much more

convenient because the functions are often used interchangeably.

Limiting Selection of Projections 25

33 -95

77 -86

EOF

should give the results:

0.000 0.000

-467100.408 3663659.262

100412.759 8553464.807

The previous example can be expanded to create a more
exible program with

runtime selection of projection parameters by removing the parms declaration and

initialization, and substituting the pj_init parameters with the arguments from

main entry:

if (! (ref = pj_init(--argc, ++argv))) {

Recompiling the program and executing it as:

a.out proj=poly ellps=clrk66 lon_0=-90 no_defs

will give the same results as the original program. The use of + parameter pre�x as

in the case with program proj is only to
ag the runline values as non-�les, much

in the same manner that - is uses to
ag options. In this case, runline �les are not

part of the program, so use of + is not needed.

When executing pj_init the projection system allocates memory for the struc-

ture PJ. This allocation is complex and consists of two or more memory alloca-

tions to assign substructures referenced within PJ. Although the previous examples

did not require its usage, certain applications are foreseen where repeated calls to

pj_init are made to re-initialize a projection with di�erent parameters. The func-

tion pj_free should be used to ensure proper memory deallocation of a previously

initialized PJ pointer when the process has no further need for the structure.

Limiting Selection of Projections

Many applications will only need a small subset of the projections contained in the

library libproj.a, but unless some action is taken, all of the projections will be

linked into the �nal process. This is not a problem unless the memory requirements

of the application are to be kept small or access to projections is to be restricted.

If there is a need to limit the number of projections, a simple two-step process

needs to followed. First creat a header �le, my_list.h for example, that contains

a list of macro calls PROJ_HEAD(id,text), one for each projection to be part of the

application program. Argument id is the acronym of the projection and argument

text is the ascii string describing the program (what appears after the colon in

proj's -l execution. The header �le, nad_list, for program nad2nad is a an

example:

/* projection list for program nad2nad */

PROJ_HEAD(lcc, "Lambert Conformal Conic")

PROJ_HEAD(omerc, "Oblique Mercator")

PROJ_HEAD(poly, "Polyconic (American)")

PROJ_HEAD(tmerc, "Transverse Mercator")

PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)")

An easy way to create this list is to copy and edit the �le pj_list.h in the source

distribution, which contains the entire listing of available projections, and edit out

of the copy all lines of unwanted projections.

Next, in one of the program code modules that includes the header �le

projects.h, preceed the include statement with:

26 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

#define PJ_LIST_H "my_list.h"

Be careful to only put this include in only one of the code modules because this

de�ne action causes the initialization of the global pj_list and multiple initializa-

tions will cause havoc with the linker.

When no action is taken to limit the number of linked projections, the module

pj_list.o from the library is used which causes linkage of all distributed projec-

tions. The savings in program size can be considerable. In the case of program

nad2nad, the use of the above process yields a program of about 48kbytes while

ignoring the process creates a program of about 154kbytes|more than three times

larger.

Error Handling

Error handling in the projection system is performed in much the same manner

as the standard ansi C library procedures. In cases where a functional value is

returned, the returned value assumes a special state such as a null pointer or double

precision HUGE_VAL. The system also sets a global type int value pj_errno to a

non-zero value indicating the cause of the error. Although similar to the ansi

standard's errno, it di�ers in two properties: it is never used as a macro and it, as

well as errno, is reset to zero at each execution of pj_init, pj_fwd and pj_inv.

To provide users with an indication of the type of error encountered, the function

char *pj_strerrno(int pj_errno)

may be used to obtain a string for display. Similar to the ansi C function strerror,

the string pointed to cannot be modi�ed.

The projection system uses negative values for pj_errno for all errors detected

by projection system tests. If C library system errors occur during execution of the

projection system, thus causing errno to return a positive value, and the projection

system otherwise does not detect an error, the value of pj_errnowill be set to errno

and the functional results will be set to the error values. In these cases, the string

pointer returned by the function pj_strerrnowill be that of the C library function

strerror.

More Complete Program Example

With the same basic criteria of example1.c program with the added restriction that

only Transverse Mercator and Polyconic projections are to be computed, dms input

data and better error diagnostics of the initialization, the following example2.c

program is written:

#include <stdio.h>

#define PJ_LIST_H "examp2.h"

#include <projects.h>

main(int argc, char **argv) {

PJ *ref;

UV data;

char lat[40], lon[40];

if (! (ref = pj_init(argc, argv))) {

fprintf(stderr, "Projection initialization failed\n"

"because: %s\n", pj_strerrno(pj_errno));

exit(1);

}

while (scanf("%39s %39s", lat, lon) == 2) {

data.u = dmstor(lon, 0);

data.v = dmstor(lat, 0);

Library Lists 27

data = pj_fwd(data, ref);

if (data.u != HUGE_VAL)

printf("%.3f\t%.3f\n", data.u, data.v);

else

printf("*\t*\n");

}

exit(0);

}

and where header �le examp2.h contains:

PROJ_HEAD(poly, "Polyconic (American)")

PROJ_HEAD(tmerc, "Transverse Mercator")

Compiling and linking the program in the same manner as the �rst example

and executing with the following script:

a.out proj=tmerc ellips=clrk66 lon_0=90w <<EOF

33.3 -90.55

44d15'7.5 87d10'15.4w

EOF

should give the results:

-51226.063 3685962.942

225953.937 4905510.287

The resulting total size of this program with limited projections was 28,712 bytes

versus 117,988 bytes for the �rst example. Of course, these size values vary with

di�erent host systems but it does give an indication of possible memory savings

when limiting the number of projection procedures linked into the program.

Library Lists

Program proj as well as the previous examples are designed as �lter programs

executed from the run-line and not interactive programs with user dialog capa-

bility. To fully discuss mechanisms to construct interactive programs using the

cartographic procedures is beyond the scope of this report, but description of some

of the projection system internals can be useful in interactive applications.

There three option list structures in the system described in the header �le

projects.h:

struct PJ_LIST {

char *id; /* projection keyword */

void *(*proj)(); /* projection entry point */

char *const*name; /* basic projection full name */

} pj_list[];

struct PJ_ELLPS {

char *id; /* ellipse keyword name */

char *major; /* a= value */

char *ell; /* elliptical parameter */

char *name; /* comments */

};

#ifndef PJ_ELLPS__

extern struct PJ_ELLPS pj_ellps[];

#endif

struct PJ_UNITS {

char *id; /* units keyword */

char *to_meter; /* multiply by value to get meters */

28 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

char *name; /* comments */

};

#ifndef PJ_UNITS__

extern struct PJ_UNITS pj_units[];

#endif

The �rst, PJ_LIST, simpli�ed for clarity here, has already been described when

discussing the alteration of the list of projections to be linked into a program. But

it, as well the others, can be used in interactive option displays (program proj

performs a display of these lists through the -lp, -le and -lu run-line options).

In each list, the id pointer refers to the argument value for the proj=, ellps=

and units= initialization parameters and the associated name points to a more hu-

man readable string describing the entry. In an interactive program, the name entry

can be displayed in a scrolled list and, maintaining an equivalence of indicies, use

the index returned by user selection to generate the string needed by the argument

list for pj_init.

Matrix Datum Conversion.

The matrix method of datum conversion is the use of a two dimensional matrix of

correction values to be added to an input of one datum to determine the value in

another datum. The row-column interval of the matrix is constant and su�ciently

spaced to allow semi-linear interpolation of correction values not located on a node

by the bivariate four-point formula (Eqn. 25.2.66, p. 882, Abramowitz and Stegun,

1965):

f(u

i

+ ph; v

j

+ qk) = (1� p)(1 � q)f

i;j

+ p(1� q)f

i+1;j

(3)

+q(1� p)f

i;j+1

+ pqf

i+1;j+1

+O(h

2

) (4)

p = (u� u

i

)=h (5)

q = (v � v

j

)=k (6)

h = u

i+1

� u

i

(7)

k = v

i+1

� v

i

(8)

In the application of correcting nad27 datum to nad83 datum the respective u and

v are longitude and latitude and f is a value to be added to the nad27 coordinates

in order to convert to nad83. The inverse correction is determined by simple, direct

iteration of detemining a point that produces a corrected value.

Usage of this system is similar to the usage of the projection system: creating

and initializing a control structure and subsequent calls to the correction procedure.

Prototypes de�ned in the header �le projects.h are:

struct CTABLE *nad_init(char *)

UV nad_cvt(UV, int, struct CTABLE *)

void nad_free(struct CTABLE *)

Execution of nad_init with a string argument de�ning the name of a correction

matrix �le covering the region of interest will create and return a pointer to the

control structure for this region. Pathing for this �le follows the same rules as

the projection default and initialization �les with the added factor of the directory

nad2783. If the initialization fails, a null pointer is returned.

Procedure nad_cvt returns the geographic coordinates of the �rst argument as

de�ned by the CTABLE structure pointed to by the third argument. If the second

argument is non-zero, the inverse correction is made, otherwise the forward cor-

rection. When coordinates are outside the region de�ned by the CTABLE structure,

HUGE_VAL is returned. When doing inverse correction it is possible to move outside

Projection Approximations 29

the region near the boundary, thus returning HUGE_VAL, even though the argument

point is within the region.

The procedure nad_free closes the structure CTABLE and returns allocated mem-

ory to the system. When creating a CTABLE structure, the correction matrix is read

into memory and a considerable increase in program memory requirements may be

expected.

Projection Approximations

Cartographic projections can be computationally complex and some uses will in-

crease this complexity by requiring multiple projection evaluations and other com-

putations for each point processed. Thus, when a large number of points are to

be processed, a considerable amoung of computer processing will be used in the

transformation process. Although costs of computing have declined and computer

speed has substantially increased, the geometric increase in the volume of data as

well as the need for fast processing (often for interactive graphics) encourages the

use of e�ective alternatives to the use of the analytic projection procedures.

Snyder (1985) reviews projection approximations but limits discussion to power

series developed by either Taylor series expansions or least-squares methods. These

techniques often work, but it is desirable to follow more traditional function ap-

proximation methods that are based upon the premise of minimizing the maximum

error of the approximation: minimax. True minimax approximations are di�cult

to determine, but there is a simple and easily applied method that nearly reaches

this goal.

Chebyshev Approximation

The approximation method used in this system is the Chebyshev method because

of its property of error determination, its near minimax characteristics and the ease

in determining its coe�cients. Application of this method to univariate functions

is well known, but neither theory nor application references for multivariate appli-

cations have been located. However, practice has shown that the following intuitive

expansion of the Chebyshev method can work for bivariate cartographic applica-

tions and most of the procedures used in this system were developed by adaptation

of the univariate procedures described in Numerical Recipes in C (Press, et al.,

1988).

In the univariate case, a function, f(u), may be approximated over the argument

inverval �1 � u � 1 by:

f(u) �

N

X

i=0

0

c

i

T

i

(u) (9)

using Fox and Parker (1968) notation where the prime indicates that the c

0

term

is halved at evaluation and where T

i

(u) is the Chebyshev polynomial of degree n.

The c

0

coe�cients are determined by:

c

n

=

2

N + 1

N

X

k=0

f(u

k

) cos(nu

k

) (10)

where

u

k

= cos

�

2k + 1

N + 1

�

�

2

�

(11)

Because jT

n

(u)j � 1 for �1 � u � 1, and (9) is exact for N =1, the accuracy

of the approximation of a non-in�nite N can be assessed by examination of the

coe�cients c

n

. When the value of the coe�cients converge to zero with increasing

30 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

n, a value of N can be selected for an approximation with the maximum error, jEj,

of this truncation being:

jEj �

1

X

n=N+1

jc

n

j: (12)

In practice, the value of N is set to a value expected to be considerably higher than

needed and then adjusted to a lower value, N

0

, such that:

jEj �

N

X

n=N

0

+1

jc

n

j: (13)

where jEj is the required precision of the application.

To apply the Chebyshev method to a bivariate expression, (9) is rewritten as:

f(u; v) �

N

X

i=0

0

2

4

M

X

j=0

0

c

i;j

T

j

(v)

3

5

T

i

(u) (14)

The braces are used to emphasize the order of evaluation. Similarly, the coe�cients

are determined by:

c

n;m

=

2

N + 1

N

X

k=1

"

2

M + 1

M

X

l=0

f(u

k

; v

l

) cos(mv

l

)

#

cos(n; u

k

) (15)

where u

k

is the same as (11) and:

v

l

= cos

�

2l + 1

M + 1

�

�

2

�

(16)

The coe�cients, p

i;j

, for the bivariate power series

f(u; v) �

N

X

i=0

M

X

j=0

p

i;j

u

i

v

j

(17)

can be derived from the Chebyshev series by adaptation of the univatiate conversion

described by Press et al. (1988). Loss of computational precision can occur with

increasing N or M and it is not recommended when the sum of the powers of any

coe�cient exceeds 6 or 7. But when the power series can be used, it is the fasted

method.

Cartographic Application

To apply Chebyshev approximations to cartographic transformation applications,

the following proj library user entries are available:

Tseries *mk_cheby(UV a, UV b, double res, UV *resid,

UV (*func)(UV), int NU, int NV, int pwr)

UV biveval(UV val, Tseries *coefs)

The procedure mk_cheby determines the two sets of Chebyshev coe�cients, one

for each axis, that are stored in the the structure pointed to by Tcheby, for the

function de�ned by func over the argument range de�ned by a and b that specify

the respective lower and upper range limits input arguments. Argument res de�nes

the precision of the approximation such that the maximum absolute error must be

�res. The values returned in the address pointed to by resid are the sums of the

absolute values of the discarded coe�cients. If mk_cheby returns a null pointer, an

error was encountered. If the value of resid.u is less than zero, adjustment criteria

Projection Approximations 31

for N were not met and the approximation may not meet error criteria|this is a

warning.

The mk_cheby arguments NU and NV are the initial number of coe�cients to be

determined in the respective u, v axis (note that N = NU � 1 and M = NV � 1).

Values of NU=NV=15 are adequate for most applications.

When pwr is not zero, the power coe�cients to be returned in structure Tseries,

otherwise Chebyshev coe�cients are returned.

After a successful execution of mk_cheby, transformations may be performed by

biveval in a manner similar to pj_fwd or pj_inv. Evaluation of the Chebyshev

approximation is performed by a bivariate adaptation of Clenshaw's method and

Horner's method method is used for the power series.

The returned structure, Tseries, is declared in the header �le projects.h as:

typedef struct { /* Chebyshev or Power series structure */

UV a, b; /* power series range for evaluation */

/* or Chebyshev argument shift/scaling */

struct PW_COEF { /* row coefficient structure */

int m; /* number of c coefficients (=0 for none) */

double *c /* power coefficients */

} *cu, *cv;

int mu, mv; /* maximum cu and cv index (+1 for count) */

int power; /* != 0 if power series, else Chebyshev */

} Tseries;

The user should examine the row indicies and maximum column counts to ensure

that the values of NU and NV were su�ciently larger (say a factor of 2) to validate

the residual error estimates.

A simple example of using the approximation procedure is determining the ap-

proximation coe�cients for converting geographic coordinates to the Massachusetts

Mainland Zone spcs cartesian coordinates. In this case, the geographic range is

between 73:5

�

W and 69:5

�

W longitude and 41

�

N and 43

�

N latitude and the output

is to be in U.S. feet and accurate to 0.01 foot (or jEj �0.005ft).

#include <stdio.h>

#include <projects.h>

static PJ *P;

static UV func(UV arg) { /* function for mk_cheby */

return (pj_fwd(arg, P));

}

main() {

char *largv[] = {

"units=us-ft",

"init=nad27:2001",

};

UV a, b, sums;

int NU, NV, pwr;

Tseries *T;

extern void pr_series(Tseries *, FILE *, char *);

/* initialize projection */

if (!(P = pj_init(sizeof(largv)/sizeof(char *), largv))) {

printf("failed: %s\n", pj_strerrno(pj_errno));

exit(1);

}

/* set limits */

a.u = -73.5 * DEG_TO_RAD;

b.u = -69.5 * DEG_TO_RAD;

a.v = 41. * DEG_TO_RAD;

b.v = 43. * DEG_TO_RAD;

32 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

NU = NV = 15;

pwr = 0;

/* generate approximation polynomial */

if (!(T = mk_cheby(a, b, .005, &sums, func, NU, NV, pwr))) {

printf("failed cheby\n");

exit(1);

}

printf("est. max error: %g %g\n", sums.u, sums.v);

pr_series(T, stdout, "%.3f");

}

Output of printf and pr_series procedure is:

est. max error: 0.00039222 0.00292703

u: 4

0 1 2400000.000

1 4 1087200.999 -8544.032 -0.249 -0.108

3 2 -24.907 0.196

v: 5

0 5 1470366.610 728721.820 21.199 9.207 0.018

2 2 6373.251 -50.086

4 1 -0.073

Several items should be noted in this example:

� Function pr_series is a utility supplied with the distribution but not part of

the library which prints coe�cients of the Tseries structure on the speci�ed

stream and format. Output consists of the tag u: and v: followed by the

number of rows for respective u, v axis, followed by lines with row index,

number of columns and column coe�cients. Rows with all zero coe�cients

are omitted.

By selection of the longitude range centered about the central meridian of the

projection, use of the symmetry in the u axis created even and odd series and

thus optimizing evaluation,

� initial number of coe�cients selected for each axis is adequate,

� because the error tends to decrease in order of magnitude steps, 0.001 foot

accuracy could probably be achieved with only a couple additional terms in

the v conversion.

To determine the power series, change pwr=1 and the format for pr_series to

%.15g and the following output will result:

sums: 0.00039222 0.00292703

u: 4

0 4 30198167.5141474 -20046865.4522086 6326812.52401693 -2903510.90579901

1 4 17662488.1318286 -12779414.4082363 5069925.25030325 -2326698.19122364

2 2 -7279001.83771805 3948519.25927063

3 2 -1944317.40964669 1054701.579871

v: 5

0 5 -3000106.82619256 17817210.2348729 -5076400.10623976 1216337.88760375

766389.396083807

1 2 20143924.5562269 -11756157.4427093

2 2 6845916.58117997 -4710337.09621368

3 1 -981757.47335366

4 1 -196680.278771301

Computational e�ciency is lost due to shifting of the longitude range so that the

series are no longer even and odd. To compensate for this and produce a more

comprehensible set of coe�cients, the following procedure modi�cations can be

made:

Projection Approximations 33

...

static UV base;

static UV func(UV arg) { /* function for mk_cheby */

arg.u += base.u;

arg.v += base.v;

return (pj_fwd(arg, P));

}

...

base.u = -71.5 * DEG_TO_RAD;

base.v = 41.0 * DEG_TO_RAD;

a.u = -2. * DEG_TO_RAD;

b.u = 2 * DEG_TO_RAD;

a.v = 0. * DEG_TO_RAD;

b.v = 2. * DEG_TO_RAD;

...

This results in the output:

sums: 0.00039222 0.00292703

u: 4

0 1 600000

1 4 15818858.7563991 -14025128.2322332 75074.3214800214 -2326698.19199796

3 2 -1189588.7866301 1054701.5798669

v: 5

0 5 -0.000122078398817393 20879148.4820533 -110587.906504021 3410004.88431155

766389.490983865

2 2 5312988.10592422 -4710337.09621398

4 1 -196680.278779712

that can be readily editted into the following procedure:

typedef struct {double u, v;} UV;

UV /* forward projection of Mass. Mainland Zone, NAD 1927 */

mass_main27(UV in) {

double u, v, u2;

u = in.u + 1.2479104151759456475004; /* 71.5 */

v = in.v - 0.7155849933176751265387; /* 41 */

u2 = u * u;

in.u = 600000. + u * (15818858.7563991 + v * (-14025128.2

+ v * (75074. + v * -2326698.))

+ u2 * (-1189589. + v * 1054702.));

in.v = v * (20879148.48 + v * (-110588. + v * (3410005.

+ v * 766389.))) + u2 * (5312988. + v * -4710337.

+ u2 * -196680.);

return in;

}

At this point, the speed of execution of these approximations can be compared

to the analytic projection function. Although performance will vary with complex-

ity of the projection, precision of approximation, hardware, operating system and

compiler, the performance shown in Table 5 is indicative of what may be expected.

In this case, the use of the Chebyshev polynomial is nearly three times faster than

the analytic evaluation.

34 PROGRAMMING WITH THE CARTOGRAPHIC LIBRARY

Table 5: Performance characteristics of approximation methods applied to forward

projection of Massachussetts Mainland Zone on an Intel 66Mhz i486DX2 processor

and a Unix operating system.

Method

Speed

�sec.

Perf.

Incr.

Analytic projection function 117 1.0

Chebyshev series (biveval) 40 2.9

Simple power series (biveval) 28 4.2

Modi�ed power series procedure 8 14.6

35

Appendix 1|Summary of program proj com-

mands

This is a short summary of the usage of program proj. Much of this material is

repeated in the manual �le proj.1 included with proj distribution and that may

be made available as an on-line resource.

Execution of proj is performed as:

proj [-control] [+control] [�les]

On Unix systems, the program name invproj may be used to select inverse pro-

jection mode. Input data �les may be speci�ed on the run-line and are processed

in a left to right order and a - may be used to indicate data to be processed from

stdin. If no data �les are speci�ed, input is assumed to be from stdin.

The -control run-line parameters are restricted to controlling the nature of data

input and output and basic selections of information to be computed. The following

run line -control parameters can appear in any order:

-I| Select inverse projection computations where input is cartesian coordinates

and output is geographic coordinates. When not speci�ed and program name

does not start with inv, forward computations are performed where input is

geographic and output is cartesian. Use is redundant when invproj is used.

-l[p|P|e|u] -l=id | This option causes an output listing of the current pro-

jections (-lp), ellipsoids (-le) and unit conversions (-lu) supported by the

program. Option -lP produces an expanded listing with supplementary in-

formation about each projection and -l=id outputs the same output for an

individual projection id.

-b | Special option for binary coordinate data input and output through stan-

dard input and standard output. Data is assumed to be in system type double

oating point words. This option is useful when proj is a son process and

allows bypassing formatting operations.

-i | Selects binary input only (see -b option).

-o | Selects binary output only (see -b option).

-ta | A speci�es a character employed as the �rst character to denote a control

line to be passed through without processing. This option applicable to ascii

input only. (# is the default value).

-e string| String is an arbitrary string to be output if an error is detected during

data transformations. The default value is the string: *\t*. Note that if the

options -b, -i or -o are employed, an error is indicated by a system de�ned

HUGE VAL output for both values.

-r| This options reverses the order of the expected input from longitude-latitude

or x-y to latitude-longitude or y-x.

-s| This options reverses the order of the output from x{y or longitude-latitude

to y{x or latitude-longitude.

-m mult | The cartesian data may be scaled by the mult parameter. When

processing data in a forward projection mode the cartesian output values are

multiplied by mult otherwise the input cartesian values are divided by mult

before inverse projection. If the �rst two characters of mult are 1/ or 1: then

the reciprocal value of mult is employed.

36 APPENDIX 1|SUMMARY OF PROGRAM PROJ COMMANDS

-f format| Format is a printf (3) format string to control the form of the output

values. For inverse projections, the output will be in degrees when this option

is employed. If a format is speci�ed for inverse projection the output data

will be in decimal degrees. The default format is %.2f for forward projection

and dms for inverse.

-[w|W]n | N is the number of signi�cant fractional digits to employ for sec-

onds output (when the option is not speci�ed, -w3 is assumed). When -W is

employed the �elds will be constant width with leading zeroes.

-v| This option serves as a diagnostic to display all parameters used to initialize

a projection. Principle usage is to identify misspelled or inappropriate user

parameters as well as functioning of the initializing selection or default options

�le. Parameters entered but not used are also identi�ed.

-E | When this option is selected, the input coordinates will be copied to the

output stream prior to the printing of the converted results. Should not be

used with -o, -i or -b.

-S| Usage of this option causes computation and print of scaling and distortion

characteristics of the projected point. Output consists of h, k, s, omega, a

and b enclosed in angle brackets, < >.

-V | This option provides a more detailed and annotated analysis than that

provided by the -S option. In addition, the user can override the forward-

inverse mode of proj with the input line's �rst character either a i or I for

inverse or f or F for forward. Coordinates must be as longitude-latitude or

x-y order and binary I/O is not allowed. Information after the coordinates is

passed on as comments and a line beginning with # is ignored.

-T ulow,uhi,vlow,vhi,res[,umax,vmax] | This option creates an ascii output

structure of coe�cients and control data for projection conversion using

Chebyshev polynomials. Arguments ulow-uhi are longitude or x data ranges

and vlow-vhi are latitude or y data ranges depending on respective forward

or inverse projection mode.

The +control run-line arguments are associated with cartographic parameters

and usage varies with projection selected and reference should be made to speci�c

projection documentation. Except for +init, these control parameters, with or

without the +, may also be used in the initialization �le referenced by +init or

the defaults �le. The options are processed in left to right order from the run-line

followed by processing entries in optionally selected initialization �le and defaults

�le. Reentry of an option is ignored with the �rst occurrence assumed to be the

desired value.

+proj=name | is always required for selection of the cartographic transforma-

tion function and where name is an acronym for the desired projection.

+init=�le:key | names a �le containing cartographic control parameters associ-

ated with the keyword key.

+R=R | speci�es that the projection should be computed as a spherical Earth

with radius R.

+ellps=acronym | The +ellps option allows selection of standard, prede�ned

ellipsoid �gures. For spherical only projections, the major axis is used as the

radius.

+a=a | speci�es an elliptical Earth's major axis a.

37

+es=e

2

| de�nes the elliptical Earth's squared eccentricity. Optionally, either

+b=b, +e=e, +rf=1=f or +f=f may be used where b, e and f are respective

minor axis, eccentricity and
attening.

+R A | must be used with elliptical Earth parameters. It determines that spher-

ical computations be used with the radius of a sphere that has a surface area

equivalent to the selected ellipsoid. +R_V can be used in a similar manner for

sphere radius of an ellipse with equivalent volume.

+R_a | must be used with elliptical Earth parameters. Spherical radius of the

arithmetic mean of the major and minor axis is used. +R_g and +R_h can be

used for equivalent geometric and harmonic means of major and minor axis.

+R_lat_a=� | must be used with elliptical Earth parameters. Spherical radius

of the arithmetic mean of the principle radii of the ellipsoid at latitude � is

used. +R_lat_g=� can be used for equivalent geometric mean of the principle

radii.

+x_0=x

0

| false easting; added to x value of the cartesian coordinate. Used in

grid systems to avoid negative grid coordinates.

+y_0=y

0

| false northing; added to y value of the cartesian coordinate. See -x_0.

+lon_0=�

0

| central meridian. Along with +lat_0, normally determines the

geographic origin of the projection.

+lat_0=�

0

| central parallel. See +lon_0.

+units=name| selects conversion of cartesian values to units speci�ed by name.

When used, other + metric parameters must be in meters.

+geoc | data geographic coordinates are to be treated as geocentric when this

option speci�ed.

+over | inhibit reduction of input longitude values to a range within �180

�

of

the central meridian.

Site installations usually have a default directory path in proj to indicate

the location of unquali�ed initialization �le names and the projection default �le

proj def.dat. The environment parameter PROJ_LIB can be used to de�ne a new

directory for this path.

38 APPENDIX 1|SUMMARY OF PROGRAM PROJ COMMANDS

39

Appendix 2|Summary of program nad2nad com-

mands

This is a summary of the usage of program nad2nad. Much of this material is

repeated in the manual �le nad2nad.1 included with proj distribution and may be

available as an on-line resource.

Execution of nad2nad is performed as:

nad2nad [-control] [�les]

Input data �les may be speci�ed on the run-line and are processed in a left to right

order and a - may be used to indicate data to be processed from stdin. If no

data �les are speci�ed, input is assumed to be from stdin.

The -control run-line parameters control the nature of data input and output

and basic selections of how information is to be processed. The following run line

-control parameters can appear in any order:

-ijo option[,option : : :] | specify the nature of the input (-i) and output (-o)

data and how it is to be processed. The following options are applicable to

both:

27j83 | data datum year. If omitted, 27 assumed.

utm=zone | data in utm grid coordinates for zone number zone.

spcs=zone | data in spcs grid coordinates for State zone number zone.

hp=zone | data in high precision grid coordinates in one of the following

zones:

Extent

Region zone East West South North

Florida FL 88

�

W 80

�

W 24

�

N 32

�

N

Maryland MD 80

�

W 74

�

W 37

�

N 41

�

N

Tennessee TN 91

�

W 81

�

W 34

�

N 38

�

N

Washington{Oregon WO 125

�

W 116

�

W 41

�

N 50

�

N

Wisconsin WI 94

�

W 88

�

W 42

�

N 48

�

N

Must be used with 83 datum.

feet | data units are in U.S. Surveyor's feet. This is allowed only when

the spcs option has been used. Meters are used for all other cartesian

data.

bin | data are in binary form.

rev | data are in reverse order: either latitude{longitude or y{x.

-ta | A speci�es a character employed as the �rst character to denote a control

line to be passed through without processing. This option applicable to ascii

input only. (# is the default value).

-e string| String is an arbitrary string to be output if an error is detected during

data transformations. The default value is the string: *\t*. Note that if the

options -b, -i or -o are employed, an error is indicated by a system de�ned

HUGE VAL output for both values.

-r region | must be given when the values 27 and 83 are di�erent for the

-i and -o options. Region is the name of the correction matrix �le for the

transformation between NAD datums and must be one of the following:

40 APPENDIX 2|SUMMARY OF PROGRAM NAD2NAD COMMANDS

Extent

Region region East West South North

Conterminous U.S. conus 131

�

W 63

�

W 20

�

N 50

�

N

Alaska alaska 166

�

E 128

�

W 46

�

N 77

�

N

Hawaii hawaii 161

�

W 154

�

W 18

�

N 23

�

N

Puerto Rico and

Virgin Islands

prvi 68

�

W 64

�

W 17

�

N 19

�

N

St. George Is., AK stgeorge 171

�

W 169

�

W 56

�

N 57

�

N

St. Lawrence Is., AK srlrnc 172

�

W 68

�

W 62

�

N 64

�

N

St. Paul Is., AK stpaul 171

�

W 169

�

W 57

�

N 58

�

N

-f format| Format is a printf (3) format string to control the form of the output

values. For inverse projections, the output will be in degrees when this option

is employed. If a format is speci�ed for inverse projection the output data

will be in decimal degrees. The default format is %.2f for forward projection

and dms for inverse.

-[w|W]n | N is the number of signi�cant fractional digits to employ for sec-

onds output (when the option is not speci�ed, -w3 is assumed). When -W is

employed the �elds will be constant width with leading zeroes.

-E | When this option is selected, the input coordinates will be copied to the

output stream prior to the printing of the converted results. Should not be

used with binary I/O.

Site installations usually have a default directory path in nad2nad to indicate

the location of conversion matrix directory nad2783. The environment parameter

PROJ_LIB can be used to de�ne a new path for this directory.

41

Appendix 3|Projection Library Entries

This is a summary of basic programmatic entries to the cartographic projection

library, libproj.a. Online source of this material may be available as the man �le

pj_init.3 distributed with the system sources.

#include <projects.h>

PJ *pj_init(int argc, char **argv)

UV pj_fwd(UV val, PJ *proj)

UV pj_inv(UV val, PJ *proj)

void pj_free(PJ *proj)

struct CTABLE *nad_init(char *name)

UV nad_cvt(UV val, int inverse, struct CTABLE *ctable)

void nad_free(struct CTABLE *ctable)

double dmstor(char *str, char **rstr)

void set_rtodms(int frac, int fixed)

char *rtodms(char *str, double rad, int pos, int neg)

char *pj_strerrno(int errnum)

Procedure pj_init selects and initializes a cartographic projection with its ar-

gument control parameters. Argc is the number of elements in the array of car-

tographic control string pointers argv that each contain individual control key-

word assignments (e.g. + proj arguments). The list must contain at least the

proj=projection and Earth's radius or elliptical parameters. If the initialization of

the projection is successful a valid address is returned otherwise a NULL value.

Once initialization is performed either forward or inverse projections can be

performed with the returned value of pj_init used as the argument proj. Some

projections do not have inverse capability; a state that can be determined by

proj->inv==0. The type UV is a structure

typedef struct { double u, v; } UV;

where the values u and v contain respective longitude and latitude, in radians, or

x and y. If a projection operation fails, both elements of the returned UV value are

set to HUGE_VAL (de�ned in math.h).

Memory associated with the projection initialization pointer, projmay be freed

with pj_free.

Procedure nad_init returns a pointer to a control structure that is used to con-

vert geographic coordinates between datums by means of a bivatiate matrix stored

in the �le named in name. If the �le cannot be opened or processed a null pointer

is returned. Geographic coordinates, val, by procedure nad_cvt are transformed

in a forward (inverse=0) or inverse (inverse!=0) manner defined \verbctable'

and returned function value. If the a conversion cannot be made, the returned

results will be set to HUGE_VAL. Procedure nad_free returns the memory allocated

by nad_init to the system.

The procedure dmstor is a utility to convert dms type ascii strings to radians.

Usage is identical to the ansi standard procedure strtod where str is a pointer to

the source data string and if pstr is not zero the contents of the pointer it points

to will be set to a pointer to the �rst character in str after characters interpreted

as part of a dms formatted word. If an error is detected in conversion, a value of

HUGE_VAL will be returned.

Procedure rtodms converts the radian argument rad to a dms string stored in

the location pointed to by str. If pos is not 0, then pos and neg are used as sign

characters to be su�xed to the converted string, otherwise standard sign pre�xing

is used. Typically, pos is set to E or N and W or S for respective conversion of

longitude or latitude values of rad.

42 APPENDIX 3|PROJECTION LIBRARY ENTRIES

Procedure set_rtodms is be used to control aspects of rtodms conversion. By

default, rtodms' conversion truncates trailing zeros and zero seconds or minutes

�elds and with an assumed precision of 0:001

00

. The precision is changed by the

value of frac which speci�es the number of signi�cant fractional seconds digits

(default 3) and if fixed is non-zero, then �xed �eld width, with leading zeros are

used in the format.

A pointer to a character string is returned by pj_strerrno which describes the

nature of a non-zero argument value, errnum. Positive arguments are operating

system errors and negative arguments are errors detected by the proj library sys-

tem. If the argument is 0, a null pointer is returned. The string referenced by the

returned pointer should be considered as type const.

